Structural aspects of protein kinase control - role of conformational flexibility

被引:83
作者
Engh, RA
Bossemeyer, D [1 ]
机构
[1] German Canc Res Ctr, Dept Pathochem, INF 280, D-69120 Heidelberg, Germany
[2] Roche Diagnost GmbH, Penzberg, Germany
[3] MPI Biochem, Martinsried, Germany
关键词
protein kinase A; activity modulation sites; ATP-binding site; drug design; ligand contact surface; induced fit;
D O I
10.1016/S0163-7258(02)00180-8
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Protein kinases catalyze the phosphotransfer reaction fundamental to most signaling and regulatory processes in the eukaryotic cell. Absolute control of individual protein kinase activity is, therefore, of utmost importance to signaling fidelity in the cell. Mechanisms for activity modulation, including complete and reversible inactivation, have been shown by crystal structures of many active and inactive protein kinases. The structures of inactivated kinases, compared with those of active and catalytically competent kinases such as the protein kinase A catalytic subunit, highlight recurring structural alterations among a set of elements of the catalytic kinase core. These 'activity modulation sites' apparently comprise the principal evolved mechanisms for control of enzyme activity in the catalytic domain. In combination, they enable diverse physiological regulatory mechanisms operative for most protein kinases. Identification and characterization of these sites should impact strategies for discovery and design of target-specific therapeutic drugs as the range of structural variations for specific kinases becomes known. The principle site, the ATP-binding pocket, is the target of many physiological regulators and also most experimental or therapeutic inhibitors, which typically block it in a competitive or allosteric fashion. Co-crystallization studies with protein kinase A and other kinases have revealed binding features of several classes of protein kinase inhibitors. Ligand-induced structural changes are common and tend to optimize buried surface areas. The ability to optimize binding energies arising from the hydrophobic effect creates a logarithmic dependence of binding energy on buried surface areas. Exceptions to this rule arise for specific inhibitor classes, and possibly also as artifacts of structure determination. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 69 条
[1]   ENERGETIC LIMITS OF PHOSPHOTRANSFER IN THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN-KINASE AS MEASURED BY VISCOSITY EXPERIMENTS [J].
ADAMS, JA ;
TAYLOR, SS .
BIOCHEMISTRY, 1992, 31 (36) :8516-8522
[2]   The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2 [J].
Battistutta, R ;
Sarno, S ;
De Moliner, E ;
Papinutto, E ;
Zanotti, G ;
Pinna, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (38) :29618-29622
[3]   The structure of phosphorylated P38γ is monomeric and reveals a conserved activation-loop conformation [J].
Bellon, S ;
Fitzgibbon, MJ ;
Fox, T ;
Hsiao, HM ;
Wilson, KP .
STRUCTURE, 1999, 7 (09) :1057-1065
[4]   PHOSPHOTRANSFERASE AND SUBSTRATE BINDING MECHANISM OF THE CAMP-DEPENDENT PROTEIN-KINASE CATALYTIC SUBUNIT FROM PORCINE HEART AS DEDUCED FROM THE 2.0 ANGSTROM STRUCTURE OF THE COMPLEX WITH MN2+ ADENYLYL IMIDODIPHOSPHATE AND INHIBITOR PEPTIDE PKI(5-24) [J].
BOSSEMEYER, D ;
ENGH, RA ;
KINZEL, V ;
PONSTINGL, H ;
HUBER, R .
EMBO JOURNAL, 1993, 12 (03) :849-859
[5]   THE GLYCINE-RICH SEQUENCE OF PROTEIN-KINASES - A MULTIFUNCTIONAL ELEMENT [J].
BOSSEMEYER, D .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (05) :201-205
[6]   Crystal structure of the complex of the cyclin D dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d [J].
Brotherton, DH ;
Dhanaraj, V ;
Wick, S ;
Brizuela, L ;
Domaille, PJ ;
Volyanik, E ;
Xu, X ;
Parisini, E ;
Smith, BO ;
Archer, SJ ;
Serrano, M ;
Brenner, SL ;
Blundell, TL ;
Laue, ED .
NATURE, 1998, 395 (6699) :244-250
[7]   The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases [J].
Brown, NR ;
Noble, MEM ;
Endicott, JA ;
Johnson, LN .
NATURE CELL BIOLOGY, 1999, 1 (07) :438-443
[8]   Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity [J].
Brown, NR ;
Noble, MEM ;
Lawrie, AM ;
Morris, MC ;
Tunnah, P ;
Divita, G ;
Johnson, LN ;
Endicott, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8746-8756
[9]   Activation mechanism of the MAP kinase ERK2 by dual phosphorylation [J].
Canagarajah, BJ ;
Khokhlatchev, A ;
Cobb, MH ;
Goldsmith, EJ .
CELL, 1997, 90 (05) :859-869
[10]   Specificity and mechanism of action of some commonly used protein kinase inhibitors [J].
Davies, SP ;
Reddy, H ;
Caivano, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2000, 351 (351) :95-105