Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis

被引:331
作者
Zhang, Di [1 ]
Karki, Amar B. [2 ]
Rutman, Dan [1 ]
Young, David R. [2 ]
Wang, Andrew [3 ]
Cocke, David [1 ]
Ho, Thomas H. [1 ]
Guo, Zhanhu [1 ]
机构
[1] Lamar Univ, Dan F Smith Dept Chem Engn, Integrated Composites Lab ICL, Beaumont, TX 77710 USA
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Ocean NanoTech LLC, Springdale, AR 72764 USA
关键词
Nanocomposite fibers; Electrospinning; Polyacronitrile (PAN); IRON-OXIDE; NANOFIBERS; STABILIZATION; BEHAVIORS;
D O I
10.1016/j.polymer.2009.06.062
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The manufacturing of pure polyacrylonitrile (PAN) fibers and magnetic PAN/Fe3O4 nanocomposite fibers is explored by an electrospinning process. A uniform, bead-free fiber production process is developed by optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and distance between needle tip to collector. The experiments demonstrate that slight changes in operating parameters may result in significant variations in the fiber morphology. The fiber formation mechanism for both pure PAN and the Fe3O4 nanoparticles Suspended in PAN solutions is explained from the rheologial behavior of the solution. The nanocomposite fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrophotometer, and X-ray diffraction (XRD). FT-IR and XRD results indicate that the introduction of Fe3O4 nanoparticles into the polymer matrix has a significant effect on the crystallinity of PAN and a strong interaction between PAN and Fe3O4 nanoparticles. The magnetic properties of the nanoparticles in the polymer nanocomposite fibers are different from those of the dried as received nanoparticles. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4189 / 4198
页数:10
相关论文
共 45 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]  
[Anonymous], 2005, CARBON FIBERS THEIR
[3]   Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning [J].
Azad, Abdul-Majeed .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 435 :468-473
[4]   Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber [J].
Bai, Jie ;
Li, Yaoxian ;
Li, Meiye ;
Wang, Shugang ;
Zhang, Chaoqun ;
Yang, Qingbiao .
APPLIED SURFACE SCIENCE, 2008, 254 (15) :4520-4523
[5]   Effect of electrospinning parameters on the nanofiber diameter and length [J].
Beachley, Vince ;
Wen, Xuejun .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (03) :663-668
[6]   MAGNETIC-PROPERTIES OF NANOPHASE COBALT PARTICLES SYNTHESIZED IN INVERSED MICELLES [J].
CHEN, JP ;
SORENSEN, CM ;
KLABUNDE, KJ ;
HADJIPANAYIS, GC .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) :6316-6318
[7]   Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats [J].
Chen, Rui ;
Zhao, Shizhen ;
Han, Gaoyi ;
Dong, Jianhua .
MATERIALS LETTERS, 2008, 62 (24) :4031-4034
[8]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[9]   Electrospinning of polyurethane fibers [J].
Demir, MM ;
Yilgor, I ;
Yilgor, E ;
Erman, B .
POLYMER, 2002, 43 (11) :3303-3309
[10]   Preparation and characterization of electrospun fibers of Nylon 11 [J].
Dhanalakshmi, M. ;
Jog, J. P. .
EXPRESS POLYMER LETTERS, 2008, 2 (08) :540-545