Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features

被引:74
作者
Velazquez, Emmanuel Rios [1 ,2 ]
Meier, Raphael [5 ]
Dunn, William D., Jr. [6 ]
Alexander, Brian [1 ,2 ]
Wiest, Roland [7 ,8 ]
Bauer, Stefan [5 ,7 ,8 ]
Gutman, David A. [6 ]
Reyes, Mauricio [5 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Radiat Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Brigham & Womens Hosp, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Radiol,Dana Farber Canc Inst, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Univ Bern, Inst Surg Technol & Biomech, CH-3012 Bern, Switzerland
[6] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA USA
[7] Univ Bern, Inselspital, Univ Hosp, Support Ctr Adv Neuroimaging,Inst Diagnost & Inte, CH-3010 Bern, Switzerland
[8] Univ Bern, Bern, Switzerland
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
QUANTITATIVE VOLUMETRIC-ANALYSIS; GLIOBLASTOMA-MULTIFORME; GENE-EXPRESSION; SURVIVAL; IDENTIFICATION; INFORMATION; RADIOMICS; SUBTYPES; PACKAGE; IMAGES;
D O I
10.1038/srep16822
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4-0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], BRATUMIA BRAIN TUMOR
[3]  
[Anonymous], MED IM COMP COMP ASS
[4]  
Bauer S., P BRATS 2012
[5]   A survey of MRI-based medical image analysis for brain tumor studies [J].
Bauer, Stefan ;
Wiest, Roland ;
Nolte, Lutz-P ;
Reyes, Mauricio .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (13) :R97-R129
[6]  
Bauer S, 2011, LECT NOTES COMPUT SC, V6893, P354, DOI 10.1007/978-3-642-23626-6_44
[7]   False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review [J].
Chalkidou, Anastasia ;
O'Doherty, Michael J. ;
Marsden, Paul K. .
PLOS ONE, 2015, 10 (05)
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   mRMRe: an R package for parallelized mRMR ensemble feature selection [J].
De Jay, Nicolas ;
Papillon-Cavanagh, Simon ;
Olsen, Catharina ;
El-Hachem, Nehme ;
Bontempi, Gianluca ;
Haibe-Kains, Benjamin .
BIOINFORMATICS, 2013, 29 (18) :2365-2368
[10]   Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study [J].
Deeley, M. A. ;
Chen, A. ;
Datteri, R. ;
Noble, J. H. ;
Cmelak, A. J. ;
Donnelly, E. F. ;
Malcolm, A. W. ;
Moretti, L. ;
Jaboin, J. ;
Niermann, K. ;
Yang, Eddy S. ;
Yu, David S. ;
Yei, F. ;
Koyama, T. ;
Ding, G. X. ;
Dawant, B. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4557-4577