Mac-1 Regulates IL-13 Activity in Macrophages by Directly Interacting with IL-13Rα1

被引:9
作者
Cao, Chunzhang [1 ]
Zhao, Juanjuan [1 ]
Doughty, Emily K. [3 ]
Migliorini, Mary [2 ]
Strickland, Dudley K. [2 ]
Kann, Maricel G. [3 ]
Zhang, Li [1 ]
机构
[1] Univ Maryland, Dept Physiol, Ctr Vasc & Inflammatory Dis, Sch Med, Baltimore, MD 21201 USA
[2] Univ Maryland, Dept Surg, Ctr Vasc & Inflammatory Dis, Sch Med, Baltimore, MD 21201 USA
[3] Univ Maryland, Dept Biol Sci, Baltimore, MD 21250 USA
基金
美国国家卫生研究院;
关键词
bioinformatics; cell signaling; cytokine; integrin; macrophage; FOAM-CELL-FORMATION; MULTIPLE SEQUENCE ALIGNMENT; ALPHA(M)BETA(2) INTEGRIN; PROTEIN INTERACTIONS; HUMAN MONOCYTES; ATHEROSCLEROSIS; RECEPTOR; MICE; ACTIVATION; BINDING;
D O I
10.1074/jbc.M115.645796
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mac-1 strongly suppresses IL-13-induced JAK/STAT activation in macrophages, but the mechanism is unknown. Results: Our data demonstrate that Mac-1 interacts with the IL-13R1 subunit of IL-13R and thereby suppresses IL-13 signaling. Conclusion: Mac-1 regulates macrophage to foam cell transformation by binding to IL-13R1. Significance: This study identifies a novel interaction and provides a potential mechanism by which Mac-1 safeguards macrophages from foam cell differentiation. Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13R1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13R1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13R1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1(-/-) macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1(-/-)LDLR(-/-) mice develop significantly more foam cells than control LDLR-/- mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13R1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future.
引用
收藏
页码:21642 / 21651
页数:10
相关论文
共 50 条
[21]   Macrophage Plasticity in Experimental Atherosclerosis [J].
Khallou-Laschet, Jamila ;
Varthaman, Aditi ;
Fornasa, Giulia ;
Compain, Caroline ;
Gaston, Anh-Thu ;
Clement, Marc ;
Dussiot, Michael ;
Levillain, Olivier ;
Graff-Dubois, Stephanie ;
Nicoletti, Antonino ;
Caligiuri, Giuseppina .
PLOS ONE, 2010, 5 (01)
[22]   Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system [J].
LaPorte, Sherry L. ;
Juo, Z. Sean ;
Vaclavikova, Jana ;
Colf, Leremy A. ;
Qi, Xiulan ;
Heller, Nicola M. ;
Keegan, Achsah D. ;
Garcia, K. Christopher .
CELL, 2008, 132 (02) :259-272
[23]   Monocyte and Macrophage Dynamics During Atherogenesis [J].
Ley, Klaus ;
Miller, Yury I. ;
Hedrick, Catherine C. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (07) :1506-1516
[24]   Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and β [J].
Li, AC ;
Binder, CJ ;
Gutierrez, A ;
Brown, KK ;
Plotkin, CR ;
Pattison, JW ;
Valledor, AF ;
Davis, RA ;
Willson, TM ;
Witztum, JL ;
Palinski, W ;
Glass, CK .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (11) :1564-1576
[25]   Progress and challenges in translating the biology of atherosclerosis [J].
Libby, Peter ;
Ridker, Paul M. ;
Hansson, Goran K. .
NATURE, 2011, 473 (7347) :317-325
[26]   An Integrated View of Molecular Coevolution in Protein-Protein Interactions [J].
Lovell, Simon C. ;
Robertson, David L. .
MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (11) :2567-2575
[27]   Entrez Gene: gene-centered information at NCBI [J].
Maglott, Donna ;
Ostell, Jim ;
Pruitt, Kim D. ;
Tatusova, Tatiana .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D52-D57
[28]   Small Molecule-Mediated Activation of the Integrin CD11b/CD18 Reduces Inflammatory Disease [J].
Maiguel, Dony ;
Faridi, Mohd Hafeez ;
Wei, Changli ;
Kuwano, Yoshihiro ;
Balla, Keir M. ;
Hernandez, Dayami ;
Barth, Constantinos J. ;
Lugo, Geanncarlo ;
Donnelly, Mary ;
Nayer, Ali ;
Moita, Luis F. ;
Schuerer, Stephan ;
Traver, David ;
Ruiz, Phillip ;
Vazquez-Padron, Roberto I. ;
Ley, Klaus ;
Reiser, Jochen ;
Gupta, Vineet .
SCIENCE SIGNALING, 2011, 4 (189)
[29]   Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet [J].
Mehta, Jawahar L. ;
Sanada, Nobuhito ;
Hu, Chang Ping ;
Chen, Jiawei ;
Dandapat, Abhijit ;
Sugawara, Fumiaki ;
Satoh, Hiroo ;
Inoue, Kazuhiko ;
Kawase, Yosuke ;
Jishage, Kou-ichi ;
Suzuki, Hiroshi ;
Takeya, Motohiro ;
Schnackenberg, Laura ;
Beger, Richard ;
Hermonat, Paul L. ;
Thomas, Maria ;
Sawamura, Tatsuya .
CIRCULATION RESEARCH, 2007, 100 (11) :1634-1642
[30]   Macrophages in the Pathogenesis of Atherosclerosis [J].
Moore, Kathryn J. ;
Tabas, Ira .
CELL, 2011, 145 (03) :341-355