Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential

被引:74
作者
Guerrero, G [1 ]
Siegel, MS [1 ]
Roska, B [1 ]
Loots, E [1 ]
Isacoff, EY [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1016/S0006-3495(02)75361-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The optical voltage sensor FlaSh, made from a fusion of a GFP "reporter domain" and a voltage-gated Shaker K+ channel "detector domain," has been mutagenically tuned in both the GFP reporter and channel detector domains. This has produced sensors with improved folding at 37degreesC, enabling use in mammalian preparations, and yielded variants with distinct spectra, kinetics, and voltage dependence, thus expanding the types of electrical signals that can be detected. The optical readout of FlaSh has also been expanded from single wavelength fluorescence intensity changes to dual wavelength measurements based on both voltage-dependent spectral shifts and changes in FRET. Different versions of FlaSh can now be chosen to optimize the detection of either action potentials or synaptic potentials, to follow high versus low rates of activity, and to best reflect electrical activity in cell types with distinct voltages of operation.
引用
收藏
页码:3607 / 3618
页数:12
相关论文
共 50 条
[11]   Structural and spectral response of green fluorescent protein variants to changes in pH [J].
Elsliger, MA ;
Wachter, RM ;
Hanson, GT ;
Kallio, K ;
Remington, SJ .
BIOCHEMISTRY, 1999, 38 (17) :5296-5301
[12]  
Garcia-Parajo MF, 2000, BIOPHYS J, V78, p384A
[13]   Improved indicators of cell membrane potential that use fluorescence resonance energy transfer [J].
Gonzalez, JE ;
Tsien, RY .
CHEMISTRY & BIOLOGY, 1997, 4 (04) :269-277
[14]  
GROSS D, 1989, METHOD CELL BIOL, V30, P193
[15]   Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy [J].
Haupts, U ;
Maiti, S ;
Schwille, P ;
Webb, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13573-13578
[16]   WAVELENGTH MUTATIONS AND POSTTRANSLATIONAL AUTOXIDATION OF GREEN FLUORESCENT PROTEIN [J].
HEIM, R ;
PRASHER, DC ;
TSIEN, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12501-12504
[17]   Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer [J].
Hein, R ;
Tsien, RY .
CURRENT BIOLOGY, 1996, 6 (02) :178-182
[18]   BIOPHYSICAL AND MOLECULAR MECHANISMS OF SHAKER POTASSIUM CHANNEL INACTIVATION [J].
HOSHI, T ;
ZAGOTTA, WN ;
ALDRICH, RW .
SCIENCE, 1990, 250 (4980) :533-538
[19]   EVIDENCE FOR THE FORMATION OF HETEROMULTIMERIC POTASSIUM CHANNELS IN XENOPUS-OOCYTES [J].
ISACOFF, EY ;
JAN, YN ;
JAN, LY .
NATURE, 1990, 345 (6275) :530-534
[20]   Mechanism and cellular applications of a green fluorescent protein-based halide sensor [J].
Jayaraman, S ;
Haggie, P ;
Wachter, RM ;
Remington, SJ ;
Verkman, AS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6047-6050