Fidelity decay as an efficient indicator of quantum chaos

被引:129
作者
Emerson, J [1 ]
Weinstein, YS
Lloyd, S
Cory, DG
机构
[1] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.89.284102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that a system's rate of fidelity decay under repeated perturbations may be measured efficiently on a quantum information processor, and analyze the conditions under which this indicator is a reliable probe of quantum chaos. The type and rate of the decay are not dependent on the eigenvalue statistics of the unperturbed system, but depend on the system's eigenvector statistics in the eigenbasis of the perturbation. For random eigenvector statistics, the decay is exponential with a rate fixed by the variance of the perturbation's energy spectrum. Hence, even classically regular models can exhibit an exponential fidelity decay under generic quantum perturbations. These results clarify which perturbations can distinguish classically regular and chaotic quantum systems.
引用
收藏
页数:4
相关论文
共 28 条
[1]  
[Anonymous], QUANTUM SIGNATURES C
[2]   Efficient quantum computing of complex dynamics [J].
Benenti, G ;
Casati, G ;
Montangero, S ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :227901-227901
[3]  
BENENTI G, QUANTPH0112060
[4]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[5]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[6]   Quantum-classical correspondence in energy space: Two interacting spin particles [J].
Borgonovi, F ;
Guarneri, I ;
Izrailev, FM .
PHYSICAL REVIEW E, 1998, 57 (05) :5291-5302
[7]  
CUCCHIETTI F, NLINCD0112015, P32710
[8]   Wigner random banded matrices with sparse structure: Local spectral density of states [J].
Fyodorov, YV ;
Chubykalo, OA ;
Izrailev, FM ;
Casati, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1603-1606
[9]   Exponential gain in quantum computing of quantum chaos and localization [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2890-2893
[10]  
Haake F., 1987, Zeitschrift fur Physik B (Condensed Matter), V65, P381, DOI 10.1007/BF01303727