Potential applications of hierarchical branching nanowires in solar energy conversion

被引:308
作者
Bierman, Matthew J. [1 ]
Jin, Song [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
关键词
EPITAXIAL-GROWTH; STRUCTURAL-CHARACTERIZATION; SEMICONDUCTOR NANOWIRES; ZNO NANOWIRES; SILICON; CELLS; PBSE; HETEROSTRUCTURES; PHOTOVOLTAICS; NANOCRYSTALS;
D O I
10.1039/b912095e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscience and nanotechnology can provide many benefits to photovoltaic and photoelectrochemical applications by combining novel nanoscale properties with processability and low cost. Taking advantage of high quality, high efficiency, yet low cost nanomaterials could potentially provide the new and transformative approaches to enable the proposed generation-III solar technologies. Nanowires are interesting because they have a long axis to absorb incident sunlight yet with a short radial distance to separate the photogenerated carriers. In this perspective, we further suggest that more "complex'' nanostructures, both in the form of hierarchically branching/hyperbranching nanowire structures and in the form of multi-component nanowire heterostructures of diverse materials, are potentially even more interesting for solar energy harvesting and conversion. The common bottom-up synthetic techniques to induce branching in nanowires to form hierarchical nanowire structures are reviewed. Several potential strategies for their incorporation into solar conversion devices are discussed and some fundamental issues and future directions are identified.
引用
收藏
页码:1050 / 1059
页数:10
相关论文
共 98 条
[1]   Highly efficient hybrid solar cells based on an octithiophene-GaAs heterojunction [J].
Ackermann, J ;
Videlot, C ;
El Kassmi, A ;
Guglielmetti, R ;
Fages, F .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (05) :810-817
[2]   Heterointerfaces in Semiconductor Nanowires [J].
Agarwal, Ritesh .
SMALL, 2008, 4 (11) :1872-1893
[3]   Epitaxial growth of InP nanowires on germanium [J].
Bakkers, EPAM ;
Van Dam, JA ;
De Franceschi, S ;
Kouwenhoven, LP ;
Kaiser, M ;
Verheijen, M ;
Wondergem, H ;
Van der Sluis, P .
NATURE MATERIALS, 2004, 3 (11) :769-773
[4]   Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells [J].
Baxter, J. B. ;
Walker, A. M. ;
van Ommering, K. ;
Aydil, E. S. .
NANOTECHNOLOGY, 2006, 17 (11) :S304-S312
[5]   Dislocation-driven nanowire growth and Eshelby twist [J].
Bierman, Matthew J. ;
Lau, Y. K. Albert ;
Kvit, Alexander V. ;
Schmitt, Andrew L. ;
Jin, Song .
SCIENCE, 2008, 320 (5879) :1060-1063
[6]   Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis [J].
Bierman, Matthew J. ;
Lau, Y. K. Albert ;
Jin, Song .
NANO LETTERS, 2007, 7 (09) :2907-2912
[7]   One-dimensional heterostructures in semiconductor nanowhiskers [J].
Björk, MT ;
Ohlsson, BJ ;
Sass, T ;
Persson, AI ;
Thelander, C ;
Magnusson, MH ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :1058-1060
[8]   Multifunctional brushes made from carbon nanotubes [J].
Cao, AY ;
Veedu, VP ;
Li, XS ;
Yao, ZL ;
Ghasemi-Nejhad, MN ;
Ajayan, PM .
NATURE MATERIALS, 2005, 4 (07) :540-545
[9]   Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting [J].
Cesar, Ilkay ;
Sivula, Kevin ;
Kay, Andreas ;
Zboril, Radek ;
Graetzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :772-782
[10]   Self-catalytic branch growth of SnO2 nanowire junctions [J].
Chen, Y ;
Campbell, L ;
Zhou, WL .
JOURNAL OF CRYSTAL GROWTH, 2004, 270 (3-4) :505-510