Dynamic MRI and CAD vs. Choline MRS: Where is the detection level for a lesion characterisation in prostate cancer?

被引:24
作者
Schmuecking, Michael [1 ]
Boltze, Carsten [2 ]
Geyer, Hagen [3 ]
Salz, Henning [4 ]
Schilling, Bert [5 ]
Wendt, Thomas G. [4 ]
Kloetzer, Karl-Heinz [6 ]
Marx, Christiane [1 ]
机构
[1] Greiz Cty Hosp, Ctr Radiol, D-07973 Greiz, Germany
[2] Univ Teaching Hosp, Inst Pathol, Waldklinikum Gera, Gera, Germany
[3] Greiz Cty Hosp, Dept Urol, D-07973 Greiz, Germany
[4] Univ Jena, Dept Radiat Oncol, Jena, Germany
[5] Practice Radiat Oncol, Erfurt, Germany
[6] Univ Teaching Hosp, Dept Radiat Oncol, Waldklinikum Gera, Gera, Germany
关键词
Dynamic MRI; CAD; choline MRS; choline PET; CT; prostate cancer; IMRT; INTENSITY-MODULATED RADIOTHERAPY; POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; PRETREATMENT EVALUATION; RADICAL PROSTATECTOMY; RADIATION-THERAPY; VOLUME DEFINITION; DOSE-ESCALATION; LOCALIZATION; PET;
D O I
10.1080/09553000903090027
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose: To evaluate the role of pre-interventional fused high resolution T2-weighted images with parametrically analysed dynamic contrast enhanced T1-weighted magnetic resonance (MR) images (DCE-MRI) and 1H magnetic resonance spectroscopy (MRS) for a precise biopsy for the detection of prostate cancer and for the delineation of intraprostatic subvolumes for intensity modulated radiation therapy (IMRT). Materials and methods: Inclusion criteria: Pathological prostate-specific antigen values (PSA) and/or previously negative transrectal ultrasound guided biopsy. Standardised biopsy of the prostate divided into 20 regions. Image fusion of coloured parametric maps derived from DCE-MRI and MRS (single voxel spectroscopy, SVS; chemical shift imaging, CSI) with T2 images for morphological localisation using the MR-workstation, a separate CAD-workstation (CAD: computer aided diagnosis) or a radiation treatment planning system. Correlation of these intraprostatic subvolumes with histology and cytokeratin-positive areas in prostatectomy species. Results: DCE-MRI: Sensitivity 82%, specificity 89%, accuracy 88%, positive predictive value 61%, negative predictive value 96%. SVS: Sensitivity 55%, specificity 62%. CSI: Sensitivity 68%, specificity 67%. False positive findings due to prostatitis, adenomatous hyperplasia, false negative findings due to low signal (PIN (prostatic intraepithelial neoplasia), cut-off level for DCE-MRI: lesions smaller 3mm and less than 30% cancer cells, for SVS: lesions smaller 8mm and less than 50% cancer cells), for CSI: lesions smaller 4mm and less than 40% cancer cells. Our MR data are correlated with published choline PET/CT data (PET/CT: hybrid scanner of positron emission tomography and computed tomography). Conclusions: DCE-MRI and MRS are helpful for a precise biopsy of the prostate. The European Society for Therapeutic Radiology and Oncology (ESTRO) guidelines 2006 for radiation treatment planning of the prostate have to be revised, if the standardised biopsy will be replaced by a lesion-orientated biopsy. Until now it is unclear, if the parametric maps of DCE-MRI and MRS can be used for radiation treatment planning of the prostate.
引用
收藏
页码:814 / 824
页数:11
相关论文
共 67 条
[1]   High conformality radiotherapy in Europe: thirty-one centres participating in the quality assurance programme of the EORTC prostate trial 22991 [J].
Ataman, F ;
Poortmans, P ;
Davis, JB ;
Bernier, J ;
Giraud, JY ;
Kouloulias, VE ;
Pierart, M ;
Bolla, M .
EUROPEAN JOURNAL OF CANCER, 2004, 40 (16) :2411-2416
[2]   Robust treatment planning for intensity modulated radiotherapy of prostate cancer based on coverage probabilities [J].
Baum, C ;
Alber, M ;
Birkner, M ;
Nüsslin, F .
RADIOTHERAPY AND ONCOLOGY, 2006, 78 (01) :27-35
[3]   Dosimetric consequences of the application of off-line setup error correction protocols and a hull-volume definition strategy for intensity modulated radiotherapy of prostate cancer [J].
Baum, C ;
Birkner, M ;
Alber, M ;
Paulsen, F ;
Nüsslin, F .
RADIOTHERAPY AND ONCOLOGY, 2005, 76 (01) :35-42
[4]   MRI for troubleshooting detection of prostate cancer [J].
Beyersdorff, D ;
Hamm, B .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2005, 177 (06) :788-795
[5]  
Beyersdorff D, 2003, ROFO-FORTSCHR RONTG, V175, P799
[6]   Guidelines for primary radiotherapy of patients with prostate cancer [J].
Boehmer, Dirk ;
Maingon, Philippe ;
Poortmans, Philip ;
Baron, Marie-Helene ;
Miralbell, Raymond ;
Remouchamps, Vincent ;
Scrase, Christopher ;
Bossi, Alberto ;
Bolla, Michel .
RADIOTHERAPY AND ONCOLOGY, 2006, 79 (03) :259-269
[7]   The sensitivity of dose distributions for organ motion and set-up uncertainties in prostate IMRT [J].
Bos, LJ ;
van der Geer, J ;
van Herk, M ;
Mijnheer, BJ ;
Lebesque, JV ;
Damen, EMF .
RADIOTHERAPY AND ONCOLOGY, 2005, 76 (01) :18-26
[8]   In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer [J].
Breeuwsma, AJ ;
Pruim, J ;
Jongen, MM ;
Suurmeijer, AJ ;
Vaalburg, W ;
Nijman, RJ ;
de Jong, IJ .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2005, 32 (06) :668-673
[9]   Pretreatment evaluation of prostate cancer:: Role of MR imaging and 1H MR spectroscopy [J].
Claus, FG ;
Hricak, H ;
Hattery, RR .
RADIOGRAPHICS, 2004, 24 :S167-S180
[10]   Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy [J].
De Crevoisier, R ;
Tucker, SL ;
Dong, L ;
Mohan, R ;
Cheung, R ;
Cox, JD ;
Kuban, DA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 62 (04) :965-973