Electronic structure of piezoelectric In0.2Ga0.8N quantum dots in GaN calculated using a tight-binding method

被引:91
作者
Saito, T
Arakawa, Y
机构
[1] Univ Tokyo, Ctr Collaborat Res, Meguro Ku, Tokyo 1538904, Japan
[2] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan
基金
日本学术振兴会;
关键词
InGaN; quantum dot; piezoelectric field; electronic structure; tight-binding method;
D O I
10.1016/S1386-9477(02)00515-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have analyzed the electronic structure of In0.2Ga0.8N quantum dots (QDs) in a GaN barrier layer using a polarization-potential-dependent spa tight-binding calculation. The dot shapes examined are a hexagonal prism and a hexagonal pyramid. A valence-force-field method was used for calculating the atomic positions and strain; a finite-difference method was used for calculating a piezoelectric potential. For the prismatic QD (86.4 Angstrom diameter and 20.8 Angstrom height), we obtained a 0.208 eV red shift of the energy gap between the ground electron and hole levels caused by the built-in piezoelectric field; i.e., the quantum-confined Stark effect. The electron state moves up toward the top and the hole state moves down toward the bottom plane of the QD. At the same time, the squared wave functions for these states exhibit atomic scale fluctuation due to the alloy disorder. For the pyramidal QD (the diameter and height unchanged), a smaller red shift of 0.100 eV is obtained due to the smaller piezoelectric field and smaller dot volume compared to the prismatic QD. The energy gap of the pyramidal QD is in better agreement with the reported photoluminescence peak energy. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 30 条
[1]  
ALBANESI EA, 1994, MATER RES SOC SYMP P, V339, P607, DOI 10.1557/PROC-339-607
[2]  
Ambacher O, 1999, PHYS STATUS SOLIDI B, V216, P381, DOI 10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO
[3]  
2-O
[4]   MULTIDIMENSIONAL QUANTUM WELL LASER AND TEMPERATURE-DEPENDENCE OF ITS THRESHOLD CURRENT [J].
ARAKAWA, Y ;
SAKAKI, H .
APPLIED PHYSICS LETTERS, 1982, 40 (11) :939-941
[5]  
Arakawa Y, 2000, IEICE T ELECTRON, VE83C, P564
[6]   Quantitative characterization of GaN quantum-dot structures in AlN by high-resolution transmission electron microscopy [J].
Arlery, M ;
Rouvière, JL ;
Widmann, F ;
Daudin, B ;
Feuillet, G ;
Mariette, H .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3287-3289
[7]   Spontaneous polarization and piezoelectric constants of III-V nitrides [J].
Bernardini, F ;
Fiorentini, V ;
Vanderbilt, D .
PHYSICAL REVIEW B, 1997, 56 (16) :10024-10027
[8]   Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures [J].
Chichibu, SF ;
Abare, AC ;
Minsky, MS ;
Keller, S ;
Fleischer, SB ;
Bowers, JE ;
Hu, E ;
Mishra, UK ;
Coldren, LA ;
DenBaars, SP ;
Sota, T .
APPLIED PHYSICS LETTERS, 1998, 73 (14) :2006-2008
[9]   Strong carrier localization in GaInN/GaN quantum dots grown by molecular beam epitaxy [J].
Damilano, B ;
Vezian, S ;
Grandjean, N ;
Massies, J .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (12A) :L1357-L1359
[10]   Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures [J].
Della Sala, F ;
Di Carlo, A ;
Lugli, P ;
Bernardini, F ;
Fiorentini, V ;
Scholz, R ;
Jancu, JM .
APPLIED PHYSICS LETTERS, 1999, 74 (14) :2002-2004