Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression

被引:216
作者
Wu, Jie
Xie, Xiaohui [1 ]
机构
[1] MIT, Broad Inst, Cambridge, MA 02142 USA
[2] Harvard Univ, Cambridge Ctr 7, Cambridge, MA 02142 USA
[3] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
关键词
D O I
10.1186/gb-2006-7-9-r85
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Two distinct classes of regulators have been implicated in regulating neuronal gene expression and mediating neuronal identity: transcription factors such as REST/NRSF ( REI silencing transcription factor) and CREB ( cAMP response element-binding protein), and microRNAs ( miRNAs). How these two classes of regulators act together to mediate neuronal gene expression is unclear. Results: Using comparative sequence analysis, here we report the identification of 895 sites ( NRSE) as the putative targets of REST. A set of the identified NRSE sites is present in the vicinity of the miRNA genes that are specifically expressed in brain-related tissues, suggesting the transcriptional regulation of these miRNAs by REST. We have further identified target genes of these miRNAs, and discovered that REST and its cofactor complex are targets of multiple brain-related miRNAs including miR-124a, miR-9 and miR-132. Given the role of both REST and miRNA as repressors, these findings point to a double-negative feedback loop between REST and the miRNAs in stabilizing and maintaining neuronal gene expression. Additionally, we find that the brain-related miRNA genes are highly enriched with evolutionarily conserved cAMP response elements ( CRE) in their regulatory regions, implicating the role of CREB in the positive regulation of these miRNAs. Conclusion: The expression of neuronal genes and neuronal identity are controlled by multiple factors, including transcriptional regulation through REST and post-transcriptional modification by several brain-related miRNAs. We demonstrate that these different levels of regulation are coordinated through extensive feedbacks, and propose a network among REST, CREB proteins and the brain-related miRNAs as a robust program for mediating neuronal gene expression.
引用
收藏
页数:14
相关论文
共 45 条
[1]   CoREST:: A functional corepressor required for regulation of neural-specific gene expression [J].
Andrés, ME ;
Burger, C ;
Peral-Rubio, MJ ;
Battaglioli, E ;
Anderson, ME ;
Grimes, J ;
Dallman, J ;
Ballas, N ;
Mandel, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9873-9878
[2]   REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis [J].
Ballas, N ;
Grunseich, C ;
Lu, DD ;
Speh, JC ;
Mandel, G .
CELL, 2005, 121 (04) :645-657
[3]   The many faces of REST oversee epigenetic programming of neuronal genes [J].
Ballas, N ;
Mandel, G .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (05) :500-506
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Comparative genomics at the vertebrate extremes [J].
Boffelli, D ;
Nobrega, MA ;
Rubin, EM .
NATURE REVIEWS GENETICS, 2004, 5 (06) :456-465
[6]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[7]   Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes [J].
Bruce, AW ;
Donaldson, IJ ;
Wood, IC ;
Yerbury, SA ;
Sadowski, MI ;
Chapman, M ;
Göttgens, B ;
Buckley, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (28) :10458-10463
[8]  
Cao XW, 2006, ANNU REV NEUROSCI, V29, P77, DOI 10.1146/annurev.neuro.29.051605.112839
[9]   The many faces of CREB [J].
Carlezon, WA ;
Duman, RS ;
Nestler, EJ .
TRENDS IN NEUROSCIENCES, 2005, 28 (08) :436-445
[10]   Gene regulation by microRNAs [J].
Carthew, RW .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (02) :203-208