Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR

被引:127
作者
Kostal, J
Yang, R
Wu, CH
Mulchandani, A
Chen, W [1 ]
机构
[1] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Environm Toxicol Program, Riverside, CA 92521 USA
关键词
D O I
10.1128/AEM.70.8.4582-4587.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The metalloregulatory protein ArsR, which offers high affinity and selectivity toward arsenite, was overexpressed in Escherichia coli in an attempt to increase the bioaccumullation of arsenic. Overproduction of ArsR resulted in elevated levels of arsenite bioaccumulation but also a severe reduction in cell growth. Incorporation of an elastin-like polypeptide as the fusion partner to ArsR (ELP153AR) improved cell growth by twofold without compromising the ability to accumulate arsenite. Resting cells overexpressing ELP153AR accumulated 5- and 60-fold-higher levels of arsenate and arsenite than control cells without ArsR overexpression. Conversely, no significant improvement in Cd2+ or Zn2+ accumulation was observed, validating the specificity of ArsR. The high affinity of ArsR allowed 100% removal of 50 ppb of arsenite from contaminated water with these engineered cells, providing a technology useful to comply with the newly approved U.S. Environmental Protection Agency limit of 10 ppb. These results open up the possibility of using cells overexpressing ArsR as an inexpensive, high-affinity ligand for arsenic removal from contaminated drinking and ground water.
引用
收藏
页码:4582 / 4587
页数:6
相关论文
共 34 条
[1]  
Bae W, 2000, BIOTECHNOL BIOENG, V70, P518, DOI 10.1002/1097-0290(20001205)70:5<518::AID-BIT6>3.0.CO
[2]  
2-5
[3]   Enhanced mercury biosorption by bacterial cells with surface-displayed MerR [J].
Bae, W ;
Wu, CH ;
Kostal, J ;
Mulchandani, A ;
Chen, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (06) :3176-3180
[4]   Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury [J].
Bae, W ;
Mehra, RK ;
Mulchandani, A ;
Chen, W .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (11) :5335-5338
[5]   Detection of heavy metal ions at femtomolar levels using protein-based biosensors [J].
Bontidean, I ;
Berggren, C ;
Johansson, G ;
Csöregi, E ;
Mattiasson, B ;
Lloyd, JA ;
Jakeman, KJ ;
Brown, NL .
ANALYTICAL CHEMISTRY, 1998, 70 (19) :4162-4169
[6]   Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto [J].
Cánovas, D ;
Durán, C ;
Rodríguez, N ;
Amils, R ;
de Lorenzo, V .
ENVIRONMENTAL MICROBIOLOGY, 2003, 5 (02) :133-138
[7]  
Chwirka JD, 2000, J AM WATER WORKS ASS, V92, P79
[8]   WATER-TREATMENT PROCESSES .3. REMOVING DISSOLVED INORGANIC CONTAMINANTS FROM WATER [J].
CLIFFORD, D ;
SUBRAMONIAN, S ;
SORG, TJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1986, 20 (11) :1072-1080
[9]  
Davis GD, 1999, BIOTECHNOL BIOENG, V65, P382, DOI 10.1002/(SICI)1097-0290(19991120)65:4<382::AID-BIT2>3.3.CO
[10]  
2-9