Signaling mechanisms that regulate actin-based motility processes in the nervous system

被引:149
作者
Meyer, G [1 ]
Feldman, EL [1 ]
机构
[1] Univ Michigan, Dept Neurol, Ann Arbor, MI 48109 USA
关键词
actin-depolymerizing factor (ADF)/cofilin; actin-related protein Arp2/3; ena/VASP; LIM kinase; rho GTPase;
D O I
10.1046/j.1471-4159.2002.01185.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.
引用
收藏
页码:490 / 503
页数:14
相关论文
共 138 条
[11]   Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J].
Bamburg, JR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :185-230
[12]   PARTIAL-PURIFICATION AND CHARACTERIZATION OF AN ACTIN DEPOLYMERIZING FACTOR FROM BRAIN [J].
BAMBURG, JR ;
HARRIS, HE ;
WEEDS, AG .
FEBS LETTERS, 1980, 121 (01) :178-182
[13]   Essential role of neural Wiskott-Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells [J].
Banzai, Y ;
Miki, H ;
Yamaguchi, H ;
Takenawa, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (16) :11987-11992
[14]   A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion [J].
Bashaw, GJ ;
Hu, HL ;
Nobes, CD ;
Goodman, CS .
JOURNAL OF CELL BIOLOGY, 2001, 155 (07) :1117-1122
[15]   The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo [J].
Bateman, J ;
Shu, H ;
Van Vactor, D .
NEURON, 2000, 26 (01) :93-106
[16]  
Bateman J, 2001, J CELL SCI, V114, P1973
[17]   Negative regulation of fibroblast motility by Ena/VASP proteins [J].
Bear, JE ;
Loureiro, JJ ;
Libova, I ;
Fässler, R ;
Wehland, J ;
Gertler, FB .
CELL, 2000, 101 (07) :717-728
[18]   Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility [J].
Bear, JE ;
Svitkina, TM ;
Krause, M ;
Schafer, DA ;
Loureiro, JJ ;
Strasser, GA ;
Maly, IV ;
Chaga, OY ;
Cooper, JA ;
Borisy, GG ;
Gertler, FB .
CELL, 2002, 109 (04) :509-521
[19]   Regulating axon branch stability: The role of p190 RhoGAP in repressing a retraction signaling pathway [J].
Billuart, P ;
Winter, CG ;
Maresh, A ;
Zhao, XS ;
Luo, LQ .
CELL, 2001, 107 (02) :195-207
[20]   A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons [J].
Bito, H ;
Furuyashiki, T ;
Ishihara, H ;
Shibasaki, Y ;
Ohashi, K ;
Mizuno, K ;
Maekawa, M ;
Ishizaki, T ;
Narumiya, S .
NEURON, 2000, 26 (02) :431-441