Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala

被引:92
作者
Braga, MFM
Aroniadou-Anderjaska, V
Xie, JW
Li, H
机构
[1] Uniformed Serv Univ Hlth Sci, Dept Psychiat, Bethesda, MD 20814 USA
[2] Uniformed Serv Univ Hlth Sci, Dept Pathol, Bethesda, MD 20814 USA
关键词
GluR5; presynaptic kainate receptors; glutamate diffusion; GABA release; inhibitory synaptic transmission; amygdala;
D O I
10.1523/JNEUROSCI.23-02-00442.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The activation of kainate receptors modulates GABAergic synaptic transmission, but the mechanisms are currently a matter of intense debate. In the basolateral amygdala (BLA), the glutamate receptor 5 (GluR5) subunit of kainate receptors is heavily expressed, and GluR5 antagonists block a novel form of synaptic plasticity; yet little is known about the role of GluR5-containing kainate receptors in the physiology of the amygdala. Here we show that GluR5 agonists bidirectionally modulate the strength of synaptic transmission from GABAergic interneurons to pyramidal cells in a concentration-dependent manner. Low concentrations of (RS)-S-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) (ATPA) (0.3 muM) or glutamate (5 muM) reduced the number of failures of GABAergic synaptic transmission and enhanced the frequency of miniature IPSCs (mIPSCs). High concentrations of ATPA (10 muM) or glutamate (200 muM) increased the number of synaptic failures and reduced the frequency of mIPSCs. The facilitation or suppression of GABAergic transmission by the GluR5 agonists did not require activation of voltage-gated calcium channels or presynaptic GABA(B) receptors. It was also found that extracellular, endogenous glutamate tonically reduces the rate of failures of GABAergic transmission. These results suggest that the terminals of GABAergic neurons in the BLA carry two subtypes of GluR5-containing kainate receptors, which have different agonist affinities and activate opposing mechanisms of action. The GluR5-mediated, bidirectional modulation of GABA release by glutamate in the BLA may play an important role in the regulation of synaptic plasticity and neuronal excitability in this structure, under normal and pathological conditions.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 38 条
[1]  
Aggleton J.P., 2000, AMYGDALA FUNCTIONAL, V2nd
[2]   Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex [J].
Ali, AB ;
Rossier, J ;
Staiger, JF ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2001, 21 (09) :2992-2999
[3]  
Bleakman D, 1996, MOL PHARMACOL, V49, P581
[4]   Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus [J].
Bolshakov, VY ;
Golan, H ;
Kandel, ER ;
Siegelbaum, SA .
NEURON, 1997, 19 (03) :635-651
[5]   Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues [J].
Burnashev, N ;
Villarroel, A ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 496 (01) :165-173
[6]   Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons [J].
Castillo, PE ;
Malenka, RC ;
Nicoll, RA .
NATURE, 1997, 388 (6638) :182-186
[7]   Kainate receptors: subunits, synaptic localization and function [J].
Chittajallu, R ;
Braithwaite, SP ;
Clarke, VRJ ;
Henley, JM .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (01) :26-35
[8]   A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission [J].
Clarke, VRJ ;
Ballyk, BA ;
Hoo, KH ;
Mandelzys, A ;
Pellizzari, A ;
Bath, CP ;
Thomas, J ;
Sharpe, EF ;
Davies, CH ;
Ornstein, PL ;
Schoepp, DD ;
Kamboj, RK ;
Collingridge, GL ;
Lodge, D ;
Bleakman, D .
NATURE, 1997, 389 (6651) :599-603
[9]   Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons [J].
Cossart, R ;
Tyzio, R ;
Dinocourt, C ;
Esclapez, M ;
Hirsch, JC ;
Ben-Ari, Y ;
Bernard, C .
NEURON, 2001, 29 (02) :497-508
[10]   GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells [J].
Cossart, R ;
Esclapez, M ;
Hirsch, JC ;
Bernard, C ;
Ben-Ari, Y .
NATURE NEUROSCIENCE, 1998, 1 (06) :470-478