High crystalline quality single crystal chemical vapour deposition diamond

被引:84
作者
Martineau, P. M. [1 ]
Gaukroger, M. P. [1 ]
Guy, K. B. [1 ]
Lawson, S. C. [1 ]
Twitchen, D. J. [2 ]
Friel, I. [2 ]
Hansen, J. O. [3 ]
Summerton, G. C. [3 ]
Addison, T. P. G. [3 ]
Burns, R. [3 ]
机构
[1] DTC Res Ctr, Maidenhead SL6 6JW, Berks, England
[2] Element Six, Ascot SL5 8BP, Berks, England
[3] Element Six, Johannesburg, South Africa
关键词
CVD-DIAMOND; SYNTHETIC DIAMOND; DISLOCATIONS; GROWTH;
D O I
10.1088/0953-8984/21/36/364205
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Homoepitaxial chemical vapour deposition (CVD) on high pressure, high temperature (HPHT) synthetic diamond substrates allows the production of diamond material with controlled point defect content. In order to minimize the extended defect content, however, it is necessary to minimize the number of substrate extended defects that reach the initial growth surface and the nucleation of dislocations at the interface between the CVD layer and its substrate. X-ray topography has indicated that when type IIa HPHT synthetic substrates are used, the density of dislocations nucleating at the interface can be less than 400 cm(-2). X-ray topography, photoluminescence imaging and birefringence microscopy of HPHT grown synthetic type IIa diamond clearly show that the extended defect content is growth sector dependent. < 111 > sectors contain the highest concentration of both stacking faults and dislocations but < 100 > sectors are relatively free of both. It has been shown that HPHT treatment of such material can significantly reduce the area of stacking faults and cause dislocations to move. This knowledge, coupled with an understanding of how growth sectors develop during HPHT synthesis, has been used to guide selection and processing of substrates suitable for CVD synthesis of material with high crystalline perfection and controlled point defect content.
引用
收藏
页数:8
相关论文
共 25 条
[1]   High quality MPACVD diamond single crystal growth: high microwave power density regime [J].
Achard, J. ;
Silva, F. ;
Tallaire, A. ;
Bonnin, X. ;
Lombardi, G. ;
Hassouni, K. ;
Gicquel, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (20) :6175-6188
[2]  
ANTSYGIN VD, 1998, OPTOELECTRON INSTRUM, V1, P9
[3]  
FRIEL I, 2009, DIAMOND RELAT UNPUB
[4]   Core reconstructions of the ⟨100⟩ edge dislocation in single crystal CVD diamond [J].
Fujita, N. ;
Blumenau, A. T. ;
Jones, R. ;
Oberg, S. ;
Briddon, P. R. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2007, 204 (07) :2211-2215
[5]   Theoretical studies on 100 dislocations in single crystal CVD diamond [J].
Fujita, N. ;
Blumenau, A. T. ;
Jones, R. ;
Oberg, S. ;
Briddon, P. R. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (12) :3070-3075
[6]   X-ray topography studies of dislocations in single crystal CVD diamond [J].
Gaukroger, M. P. ;
Martineau, P. M. ;
Crowder, M. J. ;
Friel, I. ;
Williams, S. D. ;
Twitchen, D. J. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (03) :262-269
[7]   An automatic optical imaging system for birefringent media [J].
Glazer, AM ;
Lewis, JG ;
Kaminsky, W .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1955) :2751-2765
[8]   High carrier mobility in single-crystal plasma-deposited diamond [J].
Isberg, J ;
Hammersberg, J ;
Johansson, E ;
Wikström, T ;
Twitchen, DJ ;
Whitehead, AJ ;
Coe, SE ;
Scarsbrook, GA .
SCIENCE, 2002, 297 (5587) :1670-1672
[9]   n-type doping of diamond [J].
Koizumi, Satoshi ;
Suzuki, Mariko .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (13) :3358-3366
[10]   ON THE DILATATION OF SYNTHETIC TYPE-IB DIAMOND BY SUBSTITUTIONAL NITROGEN IMPURITY [J].
LANG, AR ;
MOORE, M ;
MAKEPEACE, APW ;
WIERZCHOWSKI, W ;
WELBOURN, CM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 337 (1648) :497-520