Estimation of R0 from the initial phase of an outbreak of a vector-borne infection

被引:44
作者
Massad, E. [1 ,2 ,3 ]
Coutinho, F. A. B. [1 ,2 ]
Burattini, M. N. [1 ,2 ]
Amaku, M. [4 ]
机构
[1] Univ Sao Paulo, Sch Med, BR-01246903 Sao Paulo, Brazil
[2] LIM 01 HCFMUSP, Sao Paulo, Brazil
[3] London Sch Hyg & Trop Med, London WC1, England
[4] Univ Sao Paulo, Sch Vet Med, BR-01246903 Sao Paulo, Brazil
关键词
basic reproduction number; epidemiology; mathematical models; vector-borne infections; dengue fever; THRESHOLD CONDITIONS; DENGUE; DYNAMICS; NUMBER; FEVER;
D O I
10.1111/j.1365-3156.2009.02413.x
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The magnitude of the basic reproduction ratio R-0 of an epidemic can be estimated in several ways, namely, from the final size of the epidemic, from the average age at first infection, or from the initial growth phase of the outbreak. In this paper, we discuss this last method for estimating R-0 for vector-borne infections. Implicit in these models is the assumption that there is an exponential phase of the outbreaks, which implies that in all cases R-0 > 1. We demonstrate that an outbreak is possible, even in cases where R-0 is less than one, provided that the vector-to-human component of R-0 is greater than one and that a certain number of infected vectors are introduced into the affected population. This theory is applied to two real epidemiological dengue situations in the southeastern part of Brazil, one where R-0 is less than one, and other one where R-0 is greater than one. In both cases, the model mirrors the real situations with reasonable accuracy.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 19 条
[1]  
ANDERSON R M, 1991
[2]   Modelling the control strategies against dengue in Singapore [J].
Burattini, M. N. ;
Chen, M. ;
Chow, A. ;
Coutinho, F. A. B. ;
Goh, K. T. ;
Lopez, L. F. ;
Ma, S. ;
Massad, E. .
EPIDEMIOLOGY AND INFECTION, 2008, 136 (03) :309-319
[3]  
Choisy M, 2006, ENCY INFECT DIS MODE, P379
[4]   Dynamics of the 2006/2007 dengue outbreak in Brazil [J].
Coelho, Giovanini E. ;
Burattini, Marcelo Nascimento ;
Teixeira, Maria da Gloria ;
Bezerra Coutinho, Francisco Antonio ;
Massad, Eduardo .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2008, 103 (06) :535-U7
[5]   Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue [J].
Coutinho, F. A. B. ;
Burattini, M. N. ;
Lopez, L. F. ;
Massad, E. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) :2263-2282
[6]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation
[7]  
Dietz K, 1993, Stat Methods Med Res, V2, P23, DOI 10.1177/096228029300200103
[8]   Early determination of the reproductive number for vector-borne diseases:: the case of dengue in Brazil [J].
Favier, C ;
Degallier, N ;
Rosa-Freitas, MG ;
Boulanger, JP ;
Costa Lima, JR ;
Luitgards-Moura, JF ;
Menkès, CE ;
Mondet, B ;
Oliveira, C ;
Weimann, ETS ;
Tsouris, P .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2006, 11 (03) :332-340
[9]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[10]   A brief history of R0 and a recipe for its calculation [J].
Heesterbeek, JAP .
ACTA BIOTHEORETICA, 2002, 50 (03) :189-204