Telomeric circles: universal players in telomere maintenance?

被引:92
作者
Tomaska, Lubomir [2 ,3 ]
Nosek, Jozef [2 ,3 ]
Kramara, Juraj [2 ,3 ]
Griffith, Jack D. [1 ]
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27515 USA
[2] Comenius Univ, Dept Biochem, Fac Nat Sci, Bratislava, Slovakia
[3] Comenius Univ, Dept Genet, Fac Nat Sci, Bratislava, Slovakia
基金
美国国家卫生研究院;
关键词
YEAST CANDIDA-PARAPSILOSIS; CIRCULAR DNA SPCDNA; MITOCHONDRIAL GENOMES; KLUYVEROMYCES-LACTIS; BINDING PROTEIN; HUMAN-CELLS; T-LOOPS; MRE11/RAD50/NBS1; COMPLEX; MAMMALIAN TELOMERES; CHROMOSOME ENDS;
D O I
10.1038/nsmb.1660
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-circles). The potential involvement of t-circles in telomere maintenance was first proposed for linear mitochondrial genomes. The occurrence of t-circles in a wide range of organisms, spanning yeasts, plants and animals, suggests the involvement of t-circles in many phenomena including the alternative-lengthening of telomeres (ALT) pathway and telomere rapid deletion (TRD). In this Perspective, we summarize these findings and discuss how t-circles may be related to t-loops and how t-circles may have initiated the evolution of telomeres.
引用
收藏
页码:1010 / 1015
页数:6
相关论文
共 68 条
[31]   Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA [J].
MacAlpine, DM ;
Kolesar, J ;
Okamoto, K ;
Butow, RA ;
Perlman, PS .
EMBO JOURNAL, 2001, 20 (07) :1807-1817
[32]   Telomeres and their control [J].
McEachern, MJ ;
Krauskopf, A ;
Blackburn, EH .
ANNUAL REVIEW OF GENETICS, 2000, 34 :331-358
[33]   The first molecular details of ALT in human tumor cells [J].
Muntoni, A ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 2005, 14 :R191-R196
[34]   Unusual Telomeric DNAs in Human Telomerase-Negative Immortalized Cells [J].
Nabetani, Akira ;
Ishikawa, Fuyuki .
MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (03) :703-713
[35]   Factors influencing the recombinational expansion and spread of telomeric tandem arrays in Kluyveromyces lactis [J].
Natarajan, S ;
Groff-Vindman, C ;
McEachern, MJ .
EUKARYOTIC CELL, 2003, 2 (05) :1115-1127
[36]   Recombinational telomere elongation promoted by DNA circles [J].
Natarajan, S ;
McEachern, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4512-4521
[37]   Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein [J].
Nosek, J ;
Tomáska, L ;
Pagácová, B ;
Fukuhara, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8850-8857
[38]   LINEAR MITOCHONDRIAL DNAS FROM YEASTS - TELOMERES WITH LARGE TANDEM REPETITIONS [J].
NOSEK, J ;
DINOUEL, N ;
KOVAC, L ;
FUKUHARA, H .
MOLECULAR & GENERAL GENETICS, 1995, 247 (01) :61-72
[39]   On the origin of telomeres: a glimpse at the pre-telomerase world [J].
Nosek, J ;
Kosa, P ;
Tomaska, L .
BIOESSAYS, 2006, 28 (02) :182-190
[40]   Amplification of telomeric arrays via rolling-circle mechanism [J].
Nosek, J ;
Rycovska, A ;
Makhov, AM ;
Griffith, JD ;
Tomaska, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) :10840-10845