Monte Carlo simulations of high-performance implant free In0.3Ga0.7As nano-MOSFETs for low-power CMOS applications

被引:18
作者
Kalna, Karol [1 ]
Wilson, James A.
Moran, David A. J.
Hill, Richard J. W.
Long, Andrew R.
Droopad, Ravi
Passlack, Matthias
Thayne, Iain G.
Asenov, Asen
机构
[1] Univ Glasgow, Nanoelect Res Ctr, Glasgow G12 8LT, Lanark, Scotland
[2] Freescale Semicond Inc, Tempe, AZ 85284 USA
基金
英国工程与自然科学研究理事会;
关键词
InGaAs nano-MOSFETs; implant free; high performance; Monte Carlo simulation;
D O I
10.1109/TNANO.2006.888543
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The potential performance of implant free heterostructure In0.3Ga0.7As channel MOSFETs with gate lengths of 30, 20, and 15 nm is investigated using state-of-the-art Monte Carlo (MC) device simulations. The simulations are carefully calibrated against the electron mobility and sheet density measured on fabricated III-V MOSFET structures with a high-kappa dielectric. The MC simulations show that the 30 nm gate length implant free MOSFET can deliver a drive current of 2174 mu A/mu m at 0.7 V supply voltage. The drive current increases to 2542 mu A/mu m in the 20 nm gate length device, saturating at 2535 mu A/mu m in the 15 nm gate length one. When quantum confinement corrections are included into MC simulations, they have a negligible effect on the drive current in the 30 and 20 nm gate length transistors but lower the 15 nm gate length device drive current at 0.7 V supply voltage by 10%. When compared to equivalent Si based MOSFETs, the implant free heterostructure MOSFETs can deliver a very high performance at low supply voltage, making them suitable for low-power high-performance CMOS applications.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 27 条
[11]   Scaling of pseudomorphic high electron mobility transistors to decanano dimensions [J].
Kalna, K ;
Roy, S ;
Asenov, A ;
Elgaid, K ;
Thayne, I .
SOLID-STATE ELECTRONICS, 2002, 46 (05) :631-638
[12]  
KALNA K, P ESSDERC 2005, P169
[13]   Impact of strong quantum confinement on the performance of a highly asymmetric device structure: Monte Carlo particle-based simulation of a focused-ion-beam MOSFET [J].
Knezevic, I ;
Vasileska, DZ ;
Ferry, DK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (06) :1019-1026
[14]   Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors [J].
Lee, ML ;
Fitzgerald, EA ;
Bulsara, MT ;
Currie, MT ;
Lochtefeld, A .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (01)
[15]   Self-aligned 0.12μm T-gate In.53Ga.47As/In.52Al.48As HEMT technology utilising a non-annealed ohmic contact strategy [J].
Moran, DAJ ;
Kalna, K ;
Boyd, E ;
McEwan, F ;
McLelland, H ;
Zhuang, LL ;
Stanley, CR ;
Asenov, A ;
Thayne, I .
ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, :315-318
[16]   Carrier capture into a GaAs quantum well with a separate confinement region:: comment on quantum and classical aspects [J].
Mosko, M ;
Kálna, K .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (09) :790-796
[17]   Device performance of transistors with high-κ dielectrics using cross-wafer-scaled interface-layer thickness [J].
O'Sullivan, B. J. ;
Kaushik, V. S. ;
Ragnarsson, L. -A. ;
Onsia, B. ;
Van Hoornick, N. ;
Rohr, E. ;
DeGendt, S. ;
Heyns, M. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (07) :546-548
[18]   Development methodology for high-κ gate dielectrics on III-V semiconductors:: GdxGa0.4-xO0.6/Ga2O3 dielectric stacks on GaAs [J].
Passlack, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (04) :1773-1781
[19]  
Passlack M, 2005, MATERIALS FUNDAMENTALS OF GATE DIELECTRICS, P403, DOI 10.1007/1-4020-3078-9_12
[20]   Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor [J].
Passlack, M ;
Abrokwah, JK ;
Droopad, R ;
Yu, ZY ;
Overgaard, C ;
Yi, SI ;
Hale, M ;
Sexton, J ;
Kummel, AC .
IEEE ELECTRON DEVICE LETTERS, 2002, 23 (09) :508-510