Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues

被引:212
作者
Lewis, Dewi W. [2 ]
Rabdel Ruiz-Salvador, A. [1 ]
Gomez, Ariel [3 ]
Marleny Rodriguez-Albelo, L. [1 ]
Coudert, Francois-Xavier [2 ]
Slater, Ben [2 ]
Cheetham, Anthony K. [4 ]
Mellot-Draznieks, Caroline [2 ]
机构
[1] Univ Havana, Inst Mat Res & Engn, Zeolite Engn Lab, Havana 10400, Cuba
[2] UCL, Dept Chem, London WC1H 0AJ, England
[3] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
[4] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
来源
CRYSTENGCOMM | 2009年 / 11卷 / 11期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; CRYSTALLINE NETWORKS; STRUCTURE PREDICTION; HYBRID FRAMEWORKS; GIANT PORES; SIMULATION; ENUMERATION; ADSORPTION; TOPOLOGIES; LIGANDS;
D O I
10.1039/b912997a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use periodic DFT calculations to compute the total energy of known zeolitic imidazole frameworks (ZIFs) together with those of hypothetical porous ZIFs. We show that the total energy of ZIFs decreases with increasing density, in a similar fashion to the aluminosilicate zeolites, but with a more complex energy landscape. The computational evaluation of the stability of hypothetical ZIFs is useful in the search for viable synthesis targets. Our results suggest that a number of hitherto undiscovered nanoporous topologies should be amenable to synthesis (CAN, ATN) and that even the most open framework types might be obtained with appropriately substituted ligands.
引用
收藏
页码:2272 / 2276
页数:5
相关论文
共 36 条
[1]   Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: A topological and DFT approach [J].
Baburin, I. A. ;
Leoni, S. ;
Seifert, G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (31) :9437-9443
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]  
Cheetham AK, 1999, ANGEW CHEM INT EDIT, V38, P3268, DOI 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO
[4]  
2-U
[5]   Structural diversity and chemical trends in hybrid inorganic-organic framework materials [J].
Cheetham, Anthony K. ;
Rao, C. N. R. ;
Feller, Russell K. .
CHEMICAL COMMUNICATIONS, 2006, (46) :4780-4795
[6]   Multidimensional metal-organic frameworks constructed from flexible bis(imidazole) ligands [J].
Cui, GH ;
Li, JR ;
Tian, JL ;
Bu, XH ;
Batten, SR .
CRYSTAL GROWTH & DESIGN, 2005, 5 (05) :1775-1780
[7]   Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J].
Dueren, Tina ;
Bae, Youn-Sang ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1237-1247
[8]  
Fang QR, 2006, DALTON T, P2399, DOI 10.1039/b517400g
[9]   A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3 [J].
Fang, QR ;
Zhu, GS ;
Xue, M ;
Sun, JY ;
Wei, Y ;
Qiu, SL ;
Xu, RR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (25) :3845-3848
[10]   A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction [J].
Férey, G ;
Serre, C ;
Mellot-Draznieks, C ;
Millange, F ;
Surblé, S ;
Dutour, J ;
Margiolaki, I .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (46) :6296-6301