Snakes and ladders: Localized states in the Swift-Hohenberg equation

被引:155
作者
Burke, John [1 ]
Knobloch, Edgar [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
spatially localized states; homoclinic snaking; wavelength selection;
D O I
10.1016/j.physleta.2006.08.072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Swift-Hohenberg equation with cubic and quintic nonlinearities exhibits multiple stable and unstable spatially localized states of arbitrary length in the vicinity of the Maxwell point between spatially homogeneous and periodic states. The even and odd states are organized in a characteristic snaking structure and are connected by branches of mixed parity states forming a ladder-like structure. Numerical computations are used to illustrate the changes in the localized solutions as they grow in spatial extent and to determine the stability and wavelength of the resulting states. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:681 / 688
页数:8
相关论文
共 42 条
[1]   STABLE PARTICLE-LIKE SOLUTIONS OF MULTIDIMENSIONAL NONLINEAR FIELDS [J].
ARANSON, IS ;
GORSHKOV, KA ;
LOMOV, AS ;
RABINOVICH, MI .
PHYSICA D, 1990, 43 (2-3) :435-453
[2]   Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation [J].
Barashenkov, IV ;
Cross, S ;
Malomed, BA .
PHYSICAL REVIEW E, 2003, 68 (05)
[3]   Simulations of localized states of stationary convection in 3He-4He mixtures -: art. no. 244501 [J].
Batiste, O ;
Knobloch, E .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[4]   Spatially localized binary-fluid convection [J].
Batiste, Oriol ;
Knobloch, Edgar ;
Alonso, Arantxa ;
Mercader, Isabel .
JOURNAL OF FLUID MECHANICS, 2006, 560 :149-158
[5]   Bifurcations of periodic solutions satisfying the zero-Hamiltonian constraint in reversible differential equations [J].
Beardmore, RE ;
Peletier, MA ;
Budd, CJ ;
Wadee, MA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (05) :1461-1488
[6]   NONADIABATIC EFFECTS IN CONVECTION [J].
BENSIMON, D ;
SHRAIMAN, BI ;
CROQUETTE, V .
PHYSICAL REVIEW A, 1988, 38 (10) :5461-5464
[7]   Three-dimensional magnetohydrodynamic convectons [J].
Blanchflower, S ;
Weiss, N .
PHYSICS LETTERS A, 2002, 294 (5-6) :297-303
[8]   Magnetohydrodynamic convectons [J].
Blanchflower, S .
PHYSICS LETTERS A, 1999, 261 (1-2) :74-81
[9]   Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation [J].
Budd, CJ ;
Kuske, R .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) :73-95
[10]   Asymptotics of cellular buckling close to the Maxwell load [J].
Budd, CJ ;
Hunt, GW ;
Kuske, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :2935-2964