Block boundary value methods for linear Hamiltonian systems

被引:39
作者
Brugnano, L
Trigiante, D
机构
[1] Dipartimento di Energetica, Via C. Lombroso 6/17
关键词
D O I
10.1016/0096-3003(95)00308-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of characterizing multistep methods suitable to efficiently approximate the solutions of linear Hamiltonian systems is discussed, showing that the appropriate methods should belong to the class of discrete Boundary Value Methods (BVMs). Three families of such methods are proposed. The presented methods have infinite regions of Absolute stability and can be of any order. In fact, for every odd k there are k-step methods of order up to 2k, which is the maximum order reachable by a Ic-step formula. (C) Elsevier Science Inc., 1997
引用
收藏
页码:49 / 68
页数:20
相关论文
共 13 条
[1]  
AMODIO P, UNPUB STABLE K STEP
[2]  
AMODIO P, UNPUB PARALLEL IMPLE
[3]   A Boundary Value Approach to the Numerical Solution of Initial Value Problems by Multistep Methods [J].
Amodio, Pierluigi ;
Mazzia, Francesca .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 1995, 1 (04) :353-367
[4]   STABILITY PROPERTIES OF SOME BOUNDARY-VALUE METHODS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1993, 13 (04) :291-304
[5]   HIGH-ORDER MULTISTEP METHODS FOR BOUNDARY-VALUE-PROBLEMS [J].
BRUGNANO, L ;
TRIGIANTE, D .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :79-94
[6]  
BRUGNANO L, UNPUB SOLVING ODES M
[7]  
BRUGNANO L, IN PRESS J COMP MATH
[8]  
BRUGNANO L, IN PRESS J CAM
[9]  
Dahlquist G., 1974, NUMERICAL METHODS
[10]   CONSERVATION OF INTEGRALS AND SYMPLECTIC STRUCTURE IN THE INTEGRATION OF DIFFERENTIAL-EQUATIONS BY MULTISTEP METHODS [J].
EIROLA, T ;
SANZSERNA, JM .
NUMERISCHE MATHEMATIK, 1992, 61 (03) :281-290