Renormalization and periodic orbits for Hamiltonian flows

被引:23
作者
Abad, JJ [1 ]
Koch, H [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1007/s002200000218
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a renormalization group transformation R for analytic Hamiltonians in two or more dimensions, and use this transformation to construct invariant tori, as well as sequences of periodic orbits with rotation vectors approaching that of the invariant torus. The construction of periodic and quasiperiodic orbits is limited to near-integrable Hamiltonians. But as a first step toward a non-perturbative analysis, we extend the domain of R to include any Hamiltonian for which a certain non-resonance condition holds.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 26 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]  
Arnold V. I, 1963, Russian Mathematical Surveys, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[3]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[4]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[5]  
CHANDRE C, 1999, 9974 MPARC
[6]  
COLLET P, 1980, ITERATED MAPS INTERV
[7]  
DELALLAVE R, 1993, 938 MPARC U TEX
[8]   Area preserving nontwist maps: Periodic orbits and transition to chaos [J].
delCastilloNegrete, D ;
Greene, JM ;
Morrison, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 91 (1-2) :1-23
[9]  
DELSHAMS A, 1998, 98732 MPARC U TEX
[10]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284