A renormalization group for Hamiltonians: numerical results

被引:29
作者
Abad, JJ [1 ]
Koch, H
Wittwer, P
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
关键词
D O I
10.1088/0951-7715/11/5/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a renormalization group transformation that is related to the break-up of golden invariant tori in Hamiltonian systems with two degrees of freedom. This transformation applies to a large class of Hamiltonians, is conceptually simple, and allows for accurate numerical computations. In a numerical implementation, we find a non-trivial fixed point and determine the corresponding critical index and scaling. Our computed values for various universal constants are in good agreement with existing data for area-preserving maps. We also discuss the flow associated with the non-trivial fixed point.
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 17 条
[1]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[2]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[3]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[4]  
DELALLAVE R, 1993, MMPARC938 U TEX
[5]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[6]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884
[7]   SCALING FOR A CRITICAL KOLMOGOROV-ARNOLD-MOSER TRAJECTORY [J].
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1981, 47 (23) :1641-1643
[8]  
KOCH H, 1997, UNPOUB
[9]  
KOCH H, 1996, IN PRESS ERGOD THEOR
[10]  
MacKay R. S., 1995, Dynamical Systems and Chaos, V2