Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems

被引:19
作者
Harada, K [1 ]
Kawashima, N
机构
[1] Kyoto Univ, Dept Appl Anal & Complex Dynam Syst, Kyoto 6068501, Japan
[2] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 05期
关键词
D O I
10.1103/PhysRevE.66.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently, Syljuasen and Sandvik [Phys. Rev. E. (to be published)] proposed a new framework for constructing algorithms of quantum Monte Carlo simulation. While it includes new classes of powerful algorithms, it is not straightforward to find an efficient algorithm for a given model. Based on their framework, we propose an algorithm that is a natural extension of the conventional loop algorithm with the split-spin representation. A complete table of the vertex density and the worm-scattering probability is presented for the general XXZ model of an arbitrary S with a uniform magnetic field.
引用
收藏
页码:12 / 056705
页数:12
相关论文
共 19 条
[1]  
[Anonymous], COMMUNICATION
[2]   Simulations of discrete quantum systems in continuous Euclidean time [J].
Beard, BB ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5130-5133
[3]   Green's functions from quantum cluster algorithms [J].
Brower, R ;
Chandrasekharan, S ;
Wiese, UJ .
PHYSICA A, 1998, 261 (3-4) :520-533
[4]   CLUSTER ALGORITHM FOR VERTEX MODELS [J].
EVERTZ, HG ;
LANA, G ;
MARCU, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :875-879
[5]   Kosterlitz-Thouless transition of quantum XY model in two dimensions [J].
Harada, K ;
Kawashima, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2768-2776
[6]   Universal jump in the helicity modulus of the two-dimensional quantum XY model [J].
Harada, K ;
Kawashima, N .
PHYSICAL REVIEW B, 1997, 55 (18) :11949-11952
[7]   The two-dimensional S=1 quantum Heisenberg antiferromagnet at finite temperatures [J].
Harada, K ;
Troyer, M ;
Kawashima, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) :1130-1133
[8]  
HARADA K, CONDMAT0210080
[9]   GENERAL CLUSTER MONTE-CARLO DYNAMICS [J].
KANDEL, D ;
DOMANY, E .
PHYSICAL REVIEW B, 1991, 43 (10) :8539-8548
[10]   GENERALIZATION OF THE FORTUIN-KASTELEYN TRANSFORMATION AND ITS APPLICATION TO QUANTUM SPIN SIMULATIONS [J].
KAWASHIMA, N ;
GUBERNATIS, JE .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) :169-221