Entanglement entropy beyond the free case

被引:82
作者
Barthel, Thomas [1 ]
Dusuel, Sebastien
Vidal, Julien
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany
[2] Lycee Louis Thuillier, F-80098 Amiens 3, France
[3] Univ Paris 06, CNRS, Lab Phys Theor Matiere Condensee, UMR 7600, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevLett.97.220402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a perturbative method to compute the ground state entanglement entropy for interacting systems. We apply it to a collective model of mutually interacting spins in a magnetic field. At the quantum critical point, the entanglement entropy scales logarithmically with the subsystem size, the system size, and the anisotropy parameter. We determine the corresponding scaling prefactors and evaluate the leading finite-size correction to the entropy. Our analytical predictions are in perfect agreement with numerical results.
引用
收藏
页数:4
相关论文
共 30 条
[1]   Entanglement scaling in critical two-dimensional fermionic and bosonic systems [J].
Barthel, T. ;
Chung, M. -C. ;
Schollwoeck, U. .
PHYSICAL REVIEW A, 2006, 74 (02)
[2]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[3]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[4]   QUANTUM TUNNELING OF MAGNETIZATION IN SMALL FERROMAGNETIC PARTICLES [J].
CHUDNOVSKY, EM ;
GUNTHER, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :661-664
[5]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218
[6]   Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW B, 2005, 71 (22)
[7]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[8]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[9]   Entanglement entropy of fermions in any dimension and the widom conjecture [J].
Gioev, D ;
Klich, I .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[10]   Field dependence of the intrinsic domain magnetization of a ferromagnet [J].
Holstein, T ;
Primakoff, H .
PHYSICAL REVIEW, 1940, 58 (12) :1098-1113