Automated microscopy for high-content RNAi screening

被引:105
作者
Conrad, Christian [1 ]
Gerlich, Daniel W. [2 ]
机构
[1] European Mol Biol Lab Heidelberg, Adv Light Microscopy Core Facil, D-69117 Heidelberg, Germany
[2] ETH, Swiss Fed Inst Technol, Inst Biochem, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
QUANTITATIVE-ANALYSIS; REVERSE TRANSFECTION; CELL-DIVISION; OPEN TOOLS; INTERFERENCE; IDENTIFICATION; SYSTEMS; GENES; INFORMATICS; EXPLORATION;
D O I
10.1083/jcb.200910105
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs.
引用
收藏
页码:453 / 461
页数:9
相关论文
共 86 条
[1]   Fluorescent biosensors for real-time tracking of post-translational modification dynamics [J].
Aye-Han, Nwe-Nwe ;
Ni, Qiang ;
Zhang, Jin .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2009, 13 (04) :392-397
[2]  
AYEHAN NN, 2009, CELL METAB, V10, P63, DOI DOI 10.1016/J.CMET.2009.05.009
[3]   Quantitative morphological signatures define local signaling networks regulating cell morphology [J].
Bakal, Chris ;
Aach, John ;
Church, George ;
Perrimon, Norbert .
SCIENCE, 2007, 316 (5832) :1753-1756
[4]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[5]   Statistical methods for analysis of high-throughput RNA interference screens [J].
Birmingham, Amanda ;
Selfors, Laura M. ;
Forster, Thorsten ;
Wrobel, David ;
Kennedy, Caleb J. ;
Shanks, Emma ;
Santoyo-Lopez, Javier ;
Dunican, Dara J. ;
Long, Aideen ;
Kelleher, Dermot ;
Smith, Queta ;
Beijersbergen, Roderick L. ;
Ghazal, Peter ;
Shamu, Caroline E. .
NATURE METHODS, 2009, 6 (08) :569-575
[6]   A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells [J].
Boland, MV ;
Murphy, RF .
BIOINFORMATICS, 2001, 17 (12) :1213-1223
[7]   Genome-wide RNAi analysis of growth and viability in Drosophila cells [J].
Boutros, M ;
Kiger, AA ;
Armknecht, S ;
Kerr, K ;
Hild, M ;
Koch, B ;
Haas, SA ;
Paro, R ;
Perrimon, N .
SCIENCE, 2004, 303 (5659) :832-835
[8]   Analysis of cell-based RNAi screens [J].
Boutros, Michael ;
Bras, Ligia P. ;
Huber, Wolfgang .
GENOME BIOLOGY, 2006, 7 (07)
[9]  
Brass AL, 2008, SCIENCE, V319, P921, DOI 10.1126/science.1152725
[10]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371