Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis

被引:525
作者
Kang, Bin [1 ]
Mackey, Megan A. [1 ]
El-Sayed, Mostafa A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Laser Dynam Lab, Atlanta, GA 30332 USA
关键词
PHOTOTHERMAL THERAPY; DIFFERENT SHAPES; SIZE; CARCINOMA; NANOCRYSTALS; DEPENDENCE; CHEMISTRY; MICE;
D O I
10.1021/ja9102698
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By properly conjugating gold nanoparticles with specific peptides, we were successful in selectively transporting them to the nuclei of cancer cells. Confocal microscopy images of DNA double-strand breaks showed that localization of gold nanoparticles at the nucleus of a cancer cell damages the DNA. Gold nanoparticle dark-field imaging of live cells in real time revealed that the nuclear targeting of gold nanoparticles specifically induces cytokinesis arrest in cancer cells, where binucleate cell formation occurs after mitosis takes place. Flow cytometry results indicated that the failure to complete cell division led to programmed cell death (apoptosis) in cancer cells. These results show that gold nanoparticles localized at the nuclei of cancer cells have important Implications in understanding the interaction between nanomaterials and living systems.
引用
收藏
页码:1517 / +
页数:5
相关论文
共 20 条
[1]   Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity [J].
Boisselier, Elodie ;
Astruc, Didier .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (06) :1759-1782
[2]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[3]   Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes [J].
Chithrani, B. Devika ;
Chan, Warren C. W. .
NANO LETTERS, 2007, 7 (06) :1542-1550
[4]   Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells [J].
Chithrani, BD ;
Ghazani, AA ;
Chan, WCW .
NANO LETTERS, 2006, 6 (04) :662-668
[5]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[6]   Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice [J].
Dickerson, Erin B. ;
Dreaden, Erik C. ;
Huang, Xiaohua ;
El-Sayed, Ivan H. ;
Chu, Hunghao ;
Pushpanketh, Sujatha ;
McDonald, John F. ;
El-Sayed, Mostafa A. .
CANCER LETTERS, 2008, 269 (01) :57-66
[7]   Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J].
El-Sayed, Ivan H. ;
Huang, Xiaohua ;
El-Sayed, Mostafa A. .
CANCER LETTERS, 2006, 239 (01) :129-135
[8]   Some interesting properties of metals confined in time and nanometer space of different shapes [J].
El-Sayed, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (04) :257-264
[9]   Mechanics of receptor-mediated endocytosis [J].
Gao, HJ ;
Shi, WD ;
Freund, LB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9469-9474
[10]   Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J].
Hirsch, LR ;
Stafford, RJ ;
Bankson, JA ;
Sershen, SR ;
Rivera, B ;
Price, RE ;
Hazle, JD ;
Halas, NJ ;
West, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13549-13554