Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin

被引:433
作者
Almen, Markus Sallman [1 ]
Nordstrom, Karl J. V. [1 ]
Fredriksson, Robert [1 ]
Schioth, Helgi B. [1 ]
机构
[1] Uppsala Univ, Dept Neurosci, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
COUPLED RECEPTORS; TRANSMEMBRANE PROTEIN; TOPOLOGY; DATABASE; SEQUENCE; SEARCH; SYSTEM;
D O I
10.1186/1741-7007-7-50
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins. Results: Here we mined the human proteome and identified the membrane proteome subset using three prediction tools for alpha-helices: Phobius, TMHMM, and SOSUI. This dataset was reduced to a non-redundant set by aligning it to the human genome and then clustered with our own interactive implementation of the ISODATA algorithm. The genes were classified and each protein group was manually curated, virtually evaluating each sequence of the clusters, applying systematic comparisons with a range of databases and other resources. We identified 6,718 human membrane proteins and classified the majority of them into 234 families of which 151 belong to the three major functional groups: receptors (63 groups, 1,352 members), transporters (89 groups, 817 members) or enzymes (7 groups, 533 members). Also, 74 miscellaneous groups with 697 members were determined. Interestingly, we find that 41% of the membrane proteins are singlets with no apparent affiliation or identity to any human protein family. Our results identify major differences between the human membrane proteome and the ones in unicellular organisms and we also show a strong bias towards certain membrane topologies for different functional classes: 77% of all transporters have more than six helices while 60% of proteins with an enzymatic function and 88% receptors, that are not GPCRs, have only one single membrane spanning alpha-helix. Further, we have identified and characterized new gene families and novel members of existing families. Conclusion: Here we present the most detailed roadmap of gene numbers and families to our knowledge, which is an important step towards an overall classification of the entire human proteome. We estimate that 27% of the total human proteome are alpha-helical transmembrane proteins and provide an extended classification together with in-depth investigations of the membrane proteome's functional, structural, and evolutionary features.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
Ahram Mamoun, 2006, In Silico Biology, V6, P379
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   The Universal Protein Resource (UniProt) 2009 [J].
Bairoch, Amos ;
Consortium, UniProt ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bolleman, Jerven ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Ciapina, Luciane ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Delbard, Gwennaelle ;
Dornevil, Dolnide ;
Roggli, Paula Duek ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
James, Janet ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Kappler, Thomas ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D169-D174
[5]  
Ball GH., 1965, ISODATA NOVEL METHOD
[6]  
Ben-Shlomo Izhar, 2003, Sci STKE, V2003, pRE9, DOI 10.1126/stke.2003.187.re9
[7]   Tetraspanins as regulators of protein trafficking [J].
Berditchevski, Fedor ;
Odintsova, Elena .
TRAFFIC, 2007, 8 (02) :89-96
[8]   The 'magic tail' of G protein-coupled receptors: an anchorage for functional protein networks [J].
Bockaert, J ;
Marin, P ;
Dumuis, A ;
Fagni, L .
FEBS LETTERS, 2003, 546 (01) :65-72
[9]   BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 [J].
Chang, Antje ;
Scheer, Maurice ;
Grote, Andreas ;
Schomburg, Ida ;
Schomburg, Dietmar .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D588-D592
[10]   Distinguishing protein-coding and noncoding genes in the human genome [J].
Clamp, Michele ;
Fry, Ben ;
Kamal, Mike ;
Xie, Xiaohui ;
Cuff, James ;
Lin, Michael F. ;
Kellis, Manolis ;
Lindblad-Toh, Kerstin ;
Lander, Eric S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) :19428-19433