Elucidating KChIP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChIP2 isoform

被引:63
作者
Patel, SP [1 ]
Campbell, DL [1 ]
Strauss, HC [1 ]
机构
[1] SUNY Buffalo, Dept Physiol & Biophys, Buffalo, NY 14214 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 545卷 / 01期
关键词
D O I
10.1113/jphysiol.2002.031856
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Kv channel interacting proteins (KChIPs) are Ca2+-binding proteins with four EF-hands. KChIPs modulate Kv4 channel gating by slowing inactivation kinetics and accelerating recovery kinetics. Thus, KChIPs are believed to be important regulators of Kv4 channels underlying transient outward K+ currents in many excitable cell types. We have cloned a structurally minimal KChIP2 isoform (KChIP2d) from ferret heart. KChIP2d corresponds to the final 70 C-terminal amino acids of other KChIPs and has only one EF-hand. We demonstrate that KChIP2d is a functional KChIP that both accelerates recovery and slows inactivation kinetics of Kv4.3, indicating that the minimal C-terminus can maintain KChIP regulatory properties. We utilize KChIP2d to further demonstrate that: (i) the EF-hand modulates effects on Kv4.3 inactivation but not recovery; (ii) Ca2+-dependent effects on Kv4.3 inactivation are mediated through a mechanism reflected in the slow time constant of inactivation; and (iii) a short stretch of amino acids exclusive of the EF-hand partially mediates Ca2+-independent effects on recovery. Our results demonstrate that distinct regions of a KChIP molecule are involved in modulating inactivation and recovery. The potential ability of KChIP EF-hands to sense intracellular Ca2+ levels and transduce these changes to alterations in Kv4 channel inactivation kinetics may serve as a mechanism allowing intracellular Ca2+ transients to modulate repolarization. KChIP2d is a valuable tool for elucidating structural domains of KChIPs involved in Kv4 channel regulation.
引用
收藏
页码:5 / 11
页数:7
相关论文
共 25 条
[1]   Modulation of A-type potassium channels by a family of calcium sensors [J].
An, WF ;
Bowlby, MR ;
Betty, M ;
Cao, J ;
Ling, HP ;
Mendoza, G ;
Hinson, JW ;
Mattsson, KI ;
Strassle, BW ;
Trimmer, JS ;
Rhodes, KJ .
NATURE, 2000, 403 (6769) :553-556
[2]   Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating [J].
Bähring, R ;
Dannenberg, J ;
Peters, HC ;
Leicher, T ;
Pongs, O ;
Isbrandt, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23888-23894
[3]   Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein [J].
Beck, EJ ;
Bowlby, M ;
An, WF ;
Rhodes, KJ ;
Covarrubias, M .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 538 (03) :691-706
[4]   Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1) [J].
Bourne, Y ;
Dannenberg, J ;
Pollmann, V ;
Marchot, P ;
Pongs, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :11949-11955
[5]   Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes [J].
Brahmajothi, MV ;
Campbell, DL ;
Rasmusson, RL ;
Morales, MJ ;
Trimmer, JS ;
Nerbonne, JM ;
Strauss, HC .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (04) :581-600
[6]   CLONING AND CHARACTERIZATION OF AN I-TO-LIKE POTASSIUM CHANNEL FROM FERRET VENTRICLE [J].
COMER, MB ;
CAMPBELL, DL ;
RASMUSSON, RL ;
LAMSON, DR ;
MORALES, MJ ;
ZHANG, Y ;
STRAUSS, HC .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1994, 267 (04) :H1383-H1395
[7]   Regulation of Kv4.3 current by KChIP2 splice variants -: A component of native cardiac Ito? [J].
Deschenes, I ;
DiSilvestre, D ;
Juang, GJ ;
Wu, RC ;
An, WF ;
Tomaselli, GF .
CIRCULATION, 2002, 106 (04) :423-429
[8]   Modulation of Kv4-encoded K+ currents in the mammalian myocardium by neuronal calcium sensor-1 [J].
Guo, WN ;
Malin, SA ;
Johns, DC ;
Jeromin, A ;
Nerbonne, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :26436-26443
[9]   Role of heteromultimers in the generation of myocardial transient outward K+ currents [J].
Guo, WN ;
Li, HL ;
Aimond, F ;
Johns, DC ;
Rhodes, KJ ;
Trimmer, JS ;
Nerbonne, JM .
CIRCULATION RESEARCH, 2002, 90 (05) :586-593