Stepwise hydration of cellobiose by DFT methods:: 2.: Energy contributions to relative stabilities of cellobiose•(H2O)1-4 complexes

被引:16
作者
Bosma, Wayne B.
Appell, Michael
Willett, J. L.
Momany, Frank A.
机构
[1] USDA ARS, Natl Ctr Agr Utilizat Res, Plant Polymer Res Unit, Peoria, IL 61604 USA
[2] USDA ARS, Natl Ctr Agr Utilizat Res, Mycotoxin Res Unit, Peoria, IL 61604 USA
[3] Bradley Univ, Dept Chem & Biochem, Peoria, IL 61625 USA
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2006年 / 776卷 / 1-3期
关键词
density functional; B3LYP; cellobiose; carbohydrate-water complexes; hydrogen bonding;
D O I
10.1016/j.theochem.2006.07.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the preceding paper, it was shown that the anti form of cellobiose, which is more stable in vacuo than the syn conformation, becomes less energetically favored as an increasing number of water molecules are complexed with the cellobiose molecule. In order to clarify the reason for this change in conformational preference, a subset of the cellobiose-water complexes presented in the preceding work are presented here in more detail. The relative energies of the cellobiose-water complexes are partitioned into cellobiose conformer energy, cellobiose-water interaction energy, and the stress energies required to distort the cellobiose and water molecules to the geometry of the complex. Water placement in a position bridging between the two-sugar rings tends to destabilize the anti forms of cellobiose and stabilize the syn conformers. The source of the syn form stability in solution is found to lie in the characteristically stronger cellobiose-water interaction energies for the syn conformers, indicating the onset of a cooperativity in hydrogen bonding in the syn form of cellobiose due to the addition of the water molecules. Published by Elsevier B.V.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 22 条
[11]  
FRENCH AD, 1990, COMPUTER MODELING BI
[12]  
Glendening E, 2001, NBO VERSION 59 NATUR
[13]   Determination of the conformational flexibility of methyl α-cellobioside in solution by NMR spectroscopy and molecular simulations [J].
Larsson, EA ;
Staaf, M ;
Söderman, P ;
Höög, C ;
Widmalm, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (18) :3932-3937
[14]   Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer (vol 112, pg 9759, 2000) [J].
Lee, HM ;
Suh, SB ;
Lee, JY ;
Tarakeshwar, P ;
Kim, KS .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (07) :3343-3343
[15]   Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer [J].
Lee, HM ;
Suh, SB ;
Lee, JY ;
Tarakeshwar, P ;
Kim, KS .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (22) :9759-9772
[16]   NUCLEAR OVERHAUSER EFFECT AND CONFORMATIONAL STATES OF CELLOBIOSE IN AQUEOUS-SOLUTION [J].
LIPKIND, GM ;
SHASHKOV, AS ;
KOCHETKOV, NK .
CARBOHYDRATE RESEARCH, 1985, 141 (02) :191-197
[17]  
Momany FA, 2000, J COMPUT CHEM, V21, P1204, DOI 10.1002/1096-987X(200010)21:13<1204::AID-JCC9>3.0.CO
[18]  
2-F
[19]   B3LYP/6-311++G** study of monohydrates of α- and β-D-glucopyranose:: hydrogen bonding, stress energies, and effect of hydration on internal coordinates [J].
Momany, FA ;
Appell, M ;
Strati, G ;
Willett, JL .
CARBOHYDRATE RESEARCH, 2004, 339 (03) :553-567
[20]   Ab initio computational study of P-cellobiose conformers using B3LYP/6-311++G [J].
Strati, GL ;
Willett, JL ;
Momany, FA .
CARBOHYDRATE RESEARCH, 2002, 337 (20) :1833-1849