Transport properties of antidot superlattices of graphene nanoribbons

被引:50
作者
Rosales, L. [1 ,5 ]
Pacheco, M. [1 ]
Barticevic, Z. [1 ]
Leon, A. [2 ]
Latge, A. [3 ]
Orellana, P. A. [4 ]
机构
[1] Univ Santa Maria, Dept Fis, Valparaiso, Chile
[2] Univ Diego Portales, Fac Ingn, Santiago, Chile
[3] Univ Fed Fluminense, Inst Fis, BR-24210340 Rio De Janeiro, Brazil
[4] Univ Catolica Norte, Dept Fis, Antofagasta, Chile
[5] Pontificia Univ Catolica Valparaiso, Inst Fis, Valparaiso, Chile
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 07期
关键词
RIBBONS;
D O I
10.1103/PhysRevB.80.073402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we show a theoretical study of the electronic and transport properties of superlattices formed by a periodic structure of vacancies (antidots) on graphene nanoribbons. The systems are described by a single-band tight-binding Hamiltonian and also by ab initio total energy density-functional theory calculations. The quantum conductance is determined within the Green's function formalism, calculated by real-space renormalization techniques. A series of well defined gap structures on the conductance as a function of the Fermi energy is observed. This strongly depends on the period of the vacancies on the nanoribbon and on the internal geometrical structure of the supercell. Controlling these parameters could be possible to modulate the electronic response of the systems.
引用
收藏
页数:4
相关论文
共 32 条
[1]  
Bastard G., 1988, Wave Mechanics Applied to Semiconductor Heterostructures
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[4]  
BUONGIORNO M, 1999, PHYS REV B, V60, P7828
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Charge Transport in Disordered Graphene-Based Low Dimensional Materials [J].
Cresti, Alessandro ;
Nemec, Norbert ;
Biel, Blanca ;
Niebler, Gabriel ;
Triozon, Francois ;
Cuniberti, Gianaurelio ;
Roche, Stephan .
NANO RESEARCH, 2008, 1 (05) :361-394
[7]  
Datta S, 1995, TRANSPORT PROPERTIES
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]  
GARCIAMOLINER F, 1992, THEORY SINGLE MULTIP
[10]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59