Charge delocalization in proton channels, I: The aquaporin channels and proton blockage

被引:63
作者
Chen, Hanning
Ilan, Boaz
Wu, Yujie
Zhu, Fangqiang
Schulten, Klaus
Voth, Gregory A. [1 ]
机构
[1] Univ Utah, Ctr Biophys Modeling & Simulat, Dept Chem, Salt Lake City, UT 84112 USA
[2] Univ Illinois, Beckman Inst, Theoret & Computat Biophys Grp, Urbana, IL 61801 USA
关键词
D O I
10.1529/biophysj.106.091934
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The explicit contribution to the free energy barrier and proton conductance from the delocalized nature of the excess proton is examined in aquaporin channels using an accurate all-atom molecular dynamics computer simulation model. In particular, the channel permeation free energy profiles are calculated and compared for both a delocalized (fully Grotthuss shuttling) proton and a classical (nonshuttling) hydronium ion along two aquaporin channels, Aqp1 and GlpF. To elucidate the effects of the bipolar field thought to arise from two alpha-helical macrodipoles on proton blockage, free energy profiles were also calculated for computational mutants of the two channels where the bipolar field was eliminated by artificially discharging the backbone atoms. Comparison of the free energy profiles between the proton and hydronium cases indicates that the magnitude of the free energy barrier and position of the barrier peak for the fully delocalized and shuttling proton are somewhat different from the case of the (localized) classical hydronium. The proton conductance through the two aquaporin channels is also estimated using Poisson-Nernst-Planck theory for both the Grotthuss shuttling excess proton and the classical hydronium cation.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 65 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Aquaporin water channels: molecular mechanisms for human diseases [J].
Agre, P ;
Kozono, D .
FEBS LETTERS, 2003, 555 (01) :72-78
[3]   Not ions alone: Barriers to ion permeation in nanopores and channels [J].
Beckstein, O ;
Tai, K ;
Sansom, MSP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14694-14695
[4]   Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons [J].
Beitz, E ;
Wu, BH ;
Holm, LM ;
Schultz, JE ;
Zeuthen, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (02) :269-274
[5]   CLASSICAL AND MODERN METHODS IN REACTION-RATE THEORY [J].
BERNE, BJ ;
BORKOVEC, M ;
STRAUB, JE .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (13) :3711-3725
[6]  
Berry R. S, 2000, PHYS CHEM
[7]   The formation and dynamics of proton wires in channel environments [J].
Brewer, ML ;
Schmitt, UW ;
Voth, GA .
BIOPHYSICAL JOURNAL, 2001, 80 (04) :1691-1702
[8]   What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals [J].
Burykin, A ;
Warshel, A .
BIOPHYSICAL JOURNAL, 2003, 85 (06) :3696-3706
[9]   On the origin of the electrostatic barrier for proton transport in aquaporin [J].
Burykin, A ;
Warshel, A .
FEBS LETTERS, 2004, 570 (1-3) :41-46
[10]   Molecular basis of proton blockage in aquaporins [J].
Chakrabarti, N ;
Tajkhorshid, E ;
Roux, B ;
Pomès, R .
STRUCTURE, 2004, 12 (01) :65-74