Chimeric plastid proteome in the florida "red tide" dinoflagellate Karenia brevis

被引:86
作者
Nosenko, Tetyana [1 ]
Lidie, Kristy L.
Van Dolah, Frances M.
Lindquist, Erika
Cheng, Jan-Fang
Bhattacharya, Debashish
机构
[1] Univ Iowa, Dept Biol Sci, Roy J Carver Ctr Comparat Genom, Iowa City, IA 52242 USA
[2] NOAA, Natl Ocean Serv, Ctr Coastal Environm Hlth & Biomol Res, Charleston, SC USA
[3] Dept Energy, Joint Genome Inst, Walnut Creek, CA USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Walnut Creek, CA USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA
关键词
endosymbiosis; endosymbiotic gene transfer; Karenia brevis; proteome; red tide;
D O I
10.1093/molbev/msl074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.
引用
收藏
页码:2026 / 2038
页数:13
相关论文
共 73 条
[21]   Rickettsia, typhus and the mitochondrial connection [J].
Gray, MW .
NATURE, 1998, 396 (6707) :109-110
[22]   PLASTOCYANIN - STRUCTURE AND FUNCTION [J].
GROSS, EL .
PHOTOSYNTHESIS RESEARCH, 1993, 37 (02) :103-116
[23]   The mesozoic radiation of eukaryotic algae: The portable plastid hypothesis [J].
Grzebyk, D ;
Schofield, O ;
Vetriani, C ;
Falkowski, PG .
JOURNAL OF PHYCOLOGY, 2003, 39 (02) :259-267
[24]   PHYML Online - a web server for fast maximum likelihood-based phylogenetic inference [J].
Guindon, S ;
Lethiec, F ;
Duroux, P ;
Gascuel, O .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W557-W559
[25]   A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood [J].
Guindon, S ;
Gascuel, O .
SYSTEMATIC BIOLOGY, 2003, 52 (05) :696-704
[26]   Migration of the plastid genome to the nucleus in a peridinin dinoflagellate [J].
Hackett, JD ;
Yoon, HS ;
Soares, MB ;
Bonaldo, MF ;
Casavant, TL ;
Scheetz, TE ;
Nosenko, T ;
Bhattacharya, D .
CURRENT BIOLOGY, 2004, 14 (03) :213-218
[27]   Dinoflagellates: A remarkable evolutionary experiment [J].
Hackett, JD ;
Anderson, DM ;
Erdner, DL ;
Bhattacharya, D .
AMERICAN JOURNAL OF BOTANY, 2004, 91 (10) :1523-1534
[28]  
HACKETT JD, 2006, IN PRESS EVOLUTION A
[29]   Lateral gene transfer and the complex distribution of insertions in eukaryotic enolase [J].
Harper, JT ;
Keeling, PJ .
GENE, 2004, 340 (02) :227-235
[30]   Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids [J].
Harper, JT ;
Keeling, PJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (10) :1730-1735