Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

被引:89
作者
Maurer, Michael
Kuehleitner, Manfred
Gasser, Brigitte
Mattanovich, Diethard [1 ]
机构
[1] Univ Nat Resources & Appl Life Sci Vienna, Dept Biotechnol, Inst Appl Microbiol, Vienna, Austria
[2] Univ Nat Resources & Appl Life Sci Vienna, Dept Integrat Biol, Inst Math, Vienna, Austria
[3] Univ Vienna, Sch Bioengn, Vienna, Austria
关键词
D O I
10.1186/1475-2859-5-37
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results: We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion: The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.
引用
收藏
页数:10
相关论文
共 12 条
[1]   Engineering of Pichia pastoris for improved production of antibody fragments [J].
Gasser, Brigitte ;
Maurer, Michael ;
Gach, Johannes ;
Kunert, Renate ;
Mattanovich, Diethard .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (02) :353-361
[2]   PHYSIOLOGICAL AND TECHNOLOGICAL ASPECTS OF LARGE-SCALE HETEROLOGOUS-PROTEIN PRODUCTION WITH YEASTS [J].
HENSING, MCM ;
ROUWENHORST, RJ ;
HEIJNEN, JJ ;
VANDIJKEN, JP ;
PRONK, JT .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1995, 67 (03) :261-279
[3]   High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy [J].
Kobayashi, K ;
Kuwae, S ;
Ohya, T ;
Ohda, T ;
Ohyama, M ;
Tomomitsu, K .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2000, 90 (03) :280-288
[4]  
Lasdon L. S., 1978, ACM Transactions on Mathematical Software, V4, P34, DOI 10.1145/355769.355773
[5]   GENERAL-CHARACTERISTICS OF OPTIMAL FEED RATE PROFILES FOR VARIOUS FED-BATCH FERMENTATION PROCESSES [J].
MODAK, JM ;
LIM, HC ;
TAYEB, YJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (09) :1396-1407
[6]   OPTIMAL-CONTROL OF A SEMI-BATCH FERMENTATION [J].
OHNO, H ;
NAKANISHI, E ;
TAKAMATSU, T .
BIOTECHNOLOGY AND BIOENGINEERING, 1976, 18 (06) :847-864
[7]   High-level production of prourokinase-annexin V chimeras in the methylotrophic yeast Pichia pastoris [J].
Ohya, T ;
Morita, M ;
Miura, M ;
Kuwae, S ;
Kobayashi, K .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2002, 94 (05) :467-473
[8]   Recombinant protein production in yeasts [J].
Porro, D ;
Sauer, M ;
Branduardi, P ;
Mattanovich, D .
MOLECULAR BIOTECHNOLOGY, 2005, 31 (03) :245-259
[9]  
Roels J.A., 1983, ENERGETICS KINETICS
[10]  
Sinclair C, 1987, FERMENTATION KINETIC, V44, P330