WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis

被引:583
作者
Devaiah, Ballachanda N. [1 ]
Karthikeyan, Athikkattuvalasu S. [1 ]
Raghothama, Kashchandra G. [1 ]
机构
[1] Purdue Univ, Dept Hort & Landscape Architecture, W Lafayette, IN 47907 USA
关键词
D O I
10.1104/pp.106.093971
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phosphate (Pi) deficiency limits plant growth and development, resulting in adaptive stress responses. Among the molecular determinants of Pi stress responses, transcription factors play a critical role in regulating adaptive mechanisms. WRKY75 is one of several transcription factors induced during Pi deprivation. In this study, we evaluated the role of the WRKY75 transcription factor in regulating Pi starvation responses in Arabidopsis (Arabidopsis thaliana). WRKY75 was found to be nuclear localized and induced differentially in the plant during Pi deficiency. Suppression of WRKY75 expression through RNAi silencing resulted in early accumulation of anthocyanin, indicating that the RNAi plants were more susceptible to Pi stress. Further analysis revealed that the expression of several genes involved in Pi starvation responses, including phosphatases, Mt4/TPS1-like genes, and high-affinity Pi transporters, was decreased when WRKY75 was suppressed. Consequently, Pi uptake of the mutant plant was also decreased during Pi starvation. In addition, when WRKY75 expression was suppressed, lateral root length and number, as well as root hair number, were significantly increased. However, changes in the root architecture were obvious under both Pi-sufficient and Pi-deficient conditions. This indicates that the regulatory effect of WRKY75 on root architecture could be independent of the Pi status of the plant. Together, these results suggest that WRKY75 is a modulator of Pi starvation responses as well as root development. WRKY75 is the first member of the WRKY transcription factor family reported to be involved in regulating a nutrient starvation response and root development.
引用
收藏
页码:1789 / 1801
页数:13
相关论文
共 63 条
[11]  
2-F
[12]   Regulation of phosphate homeostasis by microRNA in Arabidopsis [J].
Chiou, TJ ;
Aung, K ;
Lin, SI ;
Wu, CC ;
Chiang, SF ;
Su, CL .
PLANT CELL, 2006, 18 (02) :412-421
[13]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[14]   Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots [J].
Cruz-Ramírez, A ;
Oropeza-Aburto, A ;
Razo-Hernández, F ;
Ramírez-Chávez, E ;
Herrera-Estrella, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (17) :6765-6770
[15]   A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions [J].
del Pozo, JC ;
Allona, I ;
Rubio, V ;
Leyva, A ;
de la Peña, A ;
Aragoncillo, C ;
Paz-Ares, J .
PLANT JOURNAL, 1999, 19 (05) :579-589
[16]   Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J].
Dong, JX ;
Chen, CH ;
Chen, ZX .
PLANT MOLECULAR BIOLOGY, 2003, 51 (01) :21-37
[17]   Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana [J].
Essigmann, B ;
Güler, S ;
Narang, RA ;
Linke, D ;
Benning, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1950-1955
[18]   The WRKY superfamily of plant transcription factors [J].
Eulgem, T ;
Rushton, PJ ;
Robatzek, S ;
Somssich, IE .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :199-206
[19]   The transcriptional control of plant responses to phosphate limitation [J].
Franco-Zorrilla, JM ;
González, E ;
Bustos, R ;
Linhares, F ;
Leyva, A ;
Paz-Ares, J .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (396) :285-293
[20]   Transcriptome of Arabidopsis leaf senescence [J].
Guo, Y ;
Cai, Z ;
Gan, S .
PLANT CELL AND ENVIRONMENT, 2004, 27 (05) :521-549