Optimal control of coupled Josephson qubits

被引:96
作者
Spoerl, A.
Schulte-Herbrueggen, T.
Glaser, S. J.
Bergholm, V.
Storcz, M. J.
Ferber, J.
Wilhelm, F. K.
机构
[1] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
[2] Aalto Univ, Phys Mat Lab, FIN-02015 Espoo, Finland
[3] Univ Munich, Dept Phys, ASC, D-80333 Munich, Germany
[4] Univ Munich, CeNS, D-80333 Munich, Germany
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 01期
关键词
QUANTUM; DYNAMICS;
D O I
10.1103/PhysRevA.75.012302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In two and three coupled Josephson charge qubits, we exemplify how to take pulses for realizing quantum gates from fidelity-limited pioneering stages to the decoherence limit of near time optimal high-fidelity controls. Thus, a CNOT gate can be obtained with a fidelity > 1-10(-9) for the two qubits. Even when including higher charge states, the leakage is below 1%, although the pulses are nonadiabatic. The controls are five times faster than the pioneering experiment [Nature (London) 425, 941 (2003)] for otherwise identical parameters i. e., a progress towards the error-correction threshold by a factor of 100. We outline schemes to generate these shaped pulses by Cauer synthesis, or more generally by few LCR circuits. The approach generalizes to larger systems: e. g., directly realizing a TOFFOLI gate in three linearly coupled charge qubits is shown to be 13 times faster than decomposing it into a circuit of nine CNOT gates of the above experimental work. In view of the next generation of fast pulse shapers, the combination of methods is designed to find wide application in quantum control of pseudospin and macroscopic quantum systems.
引用
收藏
页数:9
相关论文
共 40 条
[31]   Optimal control-based efficient synthesis of building blocks of quantum algorithms:: A perspective from network complexity towards time complexity -: art. no. 042331 [J].
Schulte-Herbrüggen, T ;
Spörl, A ;
Khaneja, N ;
Glaser, SJ .
PHYSICAL REVIEW A, 2005, 72 (04)
[32]  
SKLARZ S, QUANTPH0404081
[33]   Quantum computation via local control theory: Direct sum vs. direct product Hilbert spaces [J].
Sklarz, SE ;
Tannor, DJ .
CHEMICAL PHYSICS, 2006, 322 (1-2) :87-97
[34]  
Temes G. C., 1977, Introduction to circuit synthesis and design
[35]   Acceleration of quantum algorithms using three-qubit gates [J].
Vartiainen, JJ ;
Niskanen, AO ;
Nakahara, M ;
Salomaa, MM .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) :1-10
[36]   Manipulating the quantum state of an electrical circuit [J].
Vion, D ;
Aassime, A ;
Cottet, A ;
Joyez, P ;
Pothier, H ;
Urbina, C ;
Esteve, D ;
Devoret, MH .
SCIENCE, 2002, 296 (5569) :886-889
[37]   SUBPICOSECOND ELECTRICAL PULSE GENERATION BY EDGE ILLUMINATION OF SILICON AND INDIUM-PHOSPHIDE PHOTOCONDUCTIVE SWITCHES [J].
WANG, CC ;
CURRIE, M ;
SOBOLEWSKI, R ;
HSIANG, TY .
APPLIED PHYSICS LETTERS, 1995, 67 (01) :79-81
[38]   Demonstration of conditional gate operation using superconducting charge qubits [J].
Yamamoto, T ;
Pashkin, YA ;
Astafiev, O ;
Nakamura, Y ;
Tsai, JS .
NATURE, 2003, 425 (6961) :941-944
[39]   Geometric theory of nonlocal two-qubit operations [J].
Zhang, J ;
Vala, J ;
Sastry, S ;
Whaley, KB .
PHYSICAL REVIEW A, 2003, 67 (04) :18
[40]   Dynamics of Josephson junctions and single-flux-quantum networks with superconductor-insulator-normal-metal junction shunts [J].
Zorin, A. B. ;
Tolkacheva, E. M. ;
Khabipov, M. I. ;
Buchholz, F. -I. ;
Niemeyer, J. .
PHYSICAL REVIEW B, 2006, 74 (01)