The Mn+1AXn phases: Materials science and thin-film processing

被引:990
作者
Eklund, Per [1 ]
Beckers, Manfred [1 ]
Jansson, Ulf [2 ]
Hogberg, Hans [1 ,3 ]
Hultman, Lars [1 ]
机构
[1] Linkoping Univ, IFM, Dept Phys Chem & Biol, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[2] Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden
[3] Impact Coatings AB, SE-58216 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
Nanolaminate; Ti3SiC2; Ti2AlC; Physical vapor deposition; Sputtering; Carbides; Ceramics; CHEMICAL-VAPOR-DEPOSITION; TI-AL-C; TRANSMISSION ELECTRON-MICROSCOPY; PULSED-LASER DEPOSITION; HIGH-TEMPERATURE SYNTHESIS; LIQUID REACTION SYNTHESIS; HIGH-PURITY TI3SIC2; IN-SITU REACTION; MECHANICAL-PROPERTIES; AB-INITIO;
D O I
10.1016/j.tsf.2009.07.184
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article is a Critical review of the M(n + 1)AX(n) phases ("MAX phases", where n = 1, 2, or 3) from a materials science perspective. MAX phases are a class of hexagonal-structure ternary carbides and nitrides ("X") of a transition metal ("M") and an A-group element. The most well known are Ti2AlC, Ti3SiC2, and Ti4AlN3. There are similar to 60 MAX phases with at least 9 discovered in the last five years alone. What makes the MAX phases fascinating and potentially useful is their remarkable combination of chemical, physical, electrical, and mechanical properties, which in many ways combine the characteristics of metals and ceramics. For example, MAX phases are typically resistant to oxidation and corrosion, elastically stiff, but at the same time they exhibit high thermal and electrical conductivities and are machinable. These properties stem from an inherently nanolaminated crystal structure, with M1 + nXn slabs intercalated with pure A-element layers. The research on MAX phases has been accelerated by the introduction of thin-film processing methods. Magnetron sputtering and arc deposition have been employed to synthesize single-crystal material by epitaxial growth, which enables studies of fundamental material properties. However, the surface-initiated decomposition of M(n + 1)AX(n) thin films into MX compounds at temperatures of 1000-1100 degrees C is much lower than the decomposition temperatures typically reported for the corresponding bulk material. We also review the prospects for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates. While deposition of MAX phases from the archetypical Ti-Si-C and Ti-Al-N systems typically requires synthesis temperatures of similar to 800 degrees C, recent results have demonstrated that V2GeC and Cr2AlC can be deposited at similar to 450 degrees C. Also, thermal spray of Ti2AlC powder has been used to produce thick coatings. We further treat progress in the use of first-principle calculations for predicting hypothetical MAX phases and their properties. Together with advances in processing and materials analysis, this progress has led to recent discoveries of numerous new MAX phases such as Ti4SiC3, Ta4AlC3. and Ti3SnC2. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new equilibrium and metastable phases, as well as research challenges in understanding their physical properties, such as the effects of anisotropy, impurities, and vacancies on the electrical properties, and unexplored properties such as Superconductivity, magnetism, and optics. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1851 / 1878
页数:28
相关论文
共 325 条
[1]  
Ai MX, 2006, J AM CERAM SOC, V89, P1114, DOI [10.1111/j.1551-29162005.00818.x, 10.1111/j.1551-2916.2005.00818.x]
[2]   Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering [J].
Alami, J. ;
Eklund, P. ;
Andersson, J. M. ;
Lattemann, M. ;
Wallin, E. ;
Bohlmark, J. ;
Persson, P. ;
Helmersson, U. .
THIN SOLID FILMS, 2007, 515 (7-8) :3434-3438
[3]   High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target [J].
Alami, J. ;
Eklund, P. ;
Emmerlich, J. ;
Wilhelmsson, O. ;
Jansson, U. ;
Hogberg, H. ;
Hultman, L. ;
Helmersson, U. .
THIN SOLID FILMS, 2006, 515 (04) :1731-1736
[4]   Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces [J].
Alami, J ;
Persson, POÅ ;
Music, D ;
Gudmundsson, JT ;
Bohmark, J ;
Helmersson, U .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2005, 23 (02) :278-280
[5]   Synthesis and elastic and mechanical properties of Cr2GeC [J].
Amini, Shahram ;
Zhou, Aiguo ;
Gupta, Surojit ;
DeVillier, Andrew ;
Finkel, Peter ;
Barsoum, Michel W. .
JOURNAL OF MATERIALS RESEARCH, 2008, 23 (08) :2157-2165
[6]   Synthesis and mechanical properties of fully dense Ti2SC [J].
Amini, Shahram ;
Barsoum, Michel W. ;
El-Raghyy, Tamer .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (12) :3953-3958
[7]   High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering [J].
Anders, Andre ;
Andersson, Joakim ;
Ehiasarian, Arutiun .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (11)
[8]   Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures [J].
Andersson, Jon M. ;
Wallin, E. ;
Munger, E. P. ;
Helmersson, U. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (03)
[9]  
BANDORF R, 2008, 11 INT C PLASM SURF
[10]   HiPIMS-technology and field of application [J].
Bandorf, Ralf ;
Vergoehl, Michael ;
Werner, Oliver ;
Sittinger, Volker ;
Braeuer, Guenter .
VAKUUM IN FORSCHUNG UND PRAXIS, 2009, 21 (01) :32-38