Reactive plasmas are a well-known tool for material synthesis and surface modification. They offer a unique combination of non-equilibrium electron and ion driven plasma chemistry, energetic ions accelerated in the plasma sheath at the plasma-surface interface, high fluxes of reactive species towards surfaces and a friendly environment for thermolabile objects. Additionally, small negatively charged clusters can be generated, because they are confined in the positive plasma potential. Plasmas in hydrocarbon gases, and especially in acetylene, are a good example for the discussion of different plasma-chemical processes. These plasmas are involved in a plethora of possible applications ranging from fuel conversion to formation of single wall carbon nanotubes. This paper provides a concise overview of plasma-chemical reactions (PCRs) in low pressure reactive plasmas and discusses possible experimental and theoretical methods for the investigation of their plasma chemistry. An up-to-date summary of the knowledge about low pressure acetylene plasmas is given and two particular examples are discussed in detail: (a) Ar/C2H2 expanding thermal plasmas with electron temperatures below 0.3 eV and with a plasma chemistry initiated by charge transfer reactions and (b) radio frequency C2H2 plasmas, in which the energetic electrons mainly control PCRs.