Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions below the cmc

被引:69
作者
Angelikopoulos, Panagiotis [2 ]
Gromov, Andrei [1 ]
Leen, Ailsa [1 ,3 ]
Nerushev, Oleg [1 ]
Bock, Henry [2 ]
Campbell, Eleanor E. B. [1 ,4 ]
机构
[1] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Heriot Watt Univ, Dept Chem Engn, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Mary Erskine Sch, Edinburgh EH4 3NT, Midlothian, Scotland
[4] Konkuk Univ, Div Quantum Phases & Devices, Seoul 143701, South Korea
基金
英国工程与自然科学研究理事会;
关键词
ELECTRONIC-PROPERTIES; THERMAL-CONDUCTIVITY; LARGE POPULATIONS; SOLUBILIZATION; FUNCTIONALIZATION; ADSORPTION; SEPARATION; DIAMETER; SIDEWALL; PURIFICATION;
D O I
10.1021/jp905925r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dispersions of single-wall carbon nanotubes (SWCNTs) in surfactant solutions below the critical micelle concentration (cmc) have been studied theoretically and experimentally. Dissipative particle dynamics (DPD) simulations of a coarse-grained model predict that surfactant adsorption on small diameter tubes is dominated by aggregation of the surfactant molecules into adsorbed micelles at C approximate to 0.3C(cmc). We also find that the surfactant adsorption is nearly complete at a concentration of around C approximate to 0.5C(cmc). Further increase of the surfactant concentration has only minor effects on the radial density of surfactant headgroups, indicating that SWCNT may be fully stabilized in solutions below the cmc. SWCNT dispersions in solutions of anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) below the cmc show a significant fraction of dispersed individual tubes and small bundles, in agreement with the model calculations.
引用
收藏
页码:2 / 9
页数:8
相关论文
共 92 条
[71]   Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity [J].
Thévenot, C ;
Grassl, B ;
Bastiat, G ;
Binana, W .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 252 (2-3) :105-111
[72]   Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization [J].
Thostenson, ET ;
Chou, TW .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (16) :L77-L80
[73]   A DNA-Based Approach to the Carbon Nanotube Sorting Problem [J].
Tu, Xiaomin ;
Zheng, Ming .
NANO RESEARCH, 2008, 1 (03) :185-194
[74]   SDS Surfactants on Carbon Nanotubes: Aggregate Morphology [J].
Tummala, Naga Rajesh ;
Striolo, Alberto .
ACS NANO, 2009, 3 (03) :595-602
[75]   Single wall carbon nanotube dispersion and exfoliation in polymers [J].
Uchida, T ;
Kumar, S .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (03) :985-989
[76]   Retention of intrinsic electronic properties of soluble single-walled carbon nanotubes after a significant degree of sidewall functionalization by the bingel reaction [J].
Umeyama, Tomokazu ;
Tezuka, Noriyasu ;
Fujita, Mitsuru ;
Matano, Yoshihiro ;
Takeda, Norihiko ;
Murakoshi, Kei ;
Yoshida, Kaname ;
Isoda, Seiji ;
Imahori, Hiroshi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (27) :9734-9741
[77]   RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS [J].
Utsumi, Shigenori ;
Kanamaru, Mamiko ;
Honda, Hiroaki ;
Kanoh, Hirofumi ;
Tanaka, Hideki ;
Ohkubo, Takahiro ;
Sakai, Hideki ;
Abe, Masahiko ;
Kaneko, Katsumi .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 308 (01) :276-284
[78]  
Vaisman L., 2006, ADV COLLOID INTERFAC, V128-130, P37
[79]   Carbon nanotube/detergent interactions via coarse-grained molecular dynamics [J].
Wallace, E. Jayne ;
Sansom, Mark S. P. .
NANO LETTERS, 2007, 7 (07) :1923-1928
[80]  
WALLACE EJ, 2009, NANOTECHNOLOGY