Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid

被引:108
作者
Assary, Rajeev S. [1 ,5 ]
Redfern, Paul C. [2 ]
Hammond, Jeff R. [4 ]
Greeley, Jeffrey [3 ]
Curtiss, Larry A. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[5] Northwestern Univ, Evanston, IL 60208 USA
关键词
ALPHA-D-GLUCOPYRANOSE; GENERALIZED GRADIENT APPROXIMATION; BETA-D-GLUCOPYRANOSE; B3LYP/6-311++G-ASTERISK-ASTERISK; ENERGIES; BIOMASS; DECOMPOSITION; MOLECULES; HYDROCARBONS; DEHYDRATION;
D O I
10.1021/jp101418f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermochemistry of the conversion of glucose to levulinic acid through fructofuranosyl intermediates is investigated using the high-level ab initio methods G4 and G4MP2. The calculated gas phase reaction enthalpies indicate that the first two steps involving water molecule elimination are highly endothermic, while the other steps, including additional water elimination and rehydration to form levulinic acid, are exothermic. The calculated gas phase free energies indicate that inclusion of entropic effects makes the dehydration steps more favorable, although the elimination of the first water is still endothermic. Elevated temperatures and aqueous reaction environments are also predicted to make the dehydration reaction steps thermodynamically more favorable. On the basis of these enthalpy and free energy calculations, the first dehydration step in conversion of glucose to levulinic acid is likely a key step in controlling the overall progress of the reaction. An assessment of density functional theories and other theoretical methods for the calculation of the dehydration and hydration reactions in the decomposition of glucose is also presented.
引用
收藏
页码:9002 / 9009
页数:8
相关论文
共 41 条
[11]   Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model [J].
Cossi, M ;
Rega, N ;
Scalmani, G ;
Barone, V .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (06) :669-681
[12]   QUANTUM-CHEMICAL CONFORMATIONAL-ANALYSIS OF GLUCOSE IN AQUEOUS-SOLUTION [J].
CRAMER, CJ ;
TRUHLAR, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (13) :5745-5753
[13]   Evaluation of Density Functionals and Basis Sets for Carbohydrates [J].
Csonka, Gabor I. ;
French, Alfred D. ;
Johnson, Glenn P. ;
Stortz, Carlos A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) :679-692
[14]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[15]   Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies [J].
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (12)
[16]   Gaussian-3X (G3X) theory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets [J].
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (01) :108-117
[17]   Gaussian-4 theory using reduced order perturbation theory [J].
Curtiss, Larry A. ;
Redfern, Paul C. ;
Raghavachari, Krishnan .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (12)
[18]   Gaussian-4 theory [J].
Curtiss, Larry A. ;
Redfern, Paul C. ;
Raghavachari, Krishnan .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (08)
[19]  
Frisch M., 2004, GAUSSIAN 03 REVISION, DOI DOI 10.1016/J.MOLSTRUC.2017.03.014
[20]   Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].
Hammer, B ;
Hansen, LB ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (11) :7413-7421