Metabolomics:: current state and evolving methodologies and tools

被引:168
作者
Oldiges, Marco [1 ]
Luetz, Stephan [1 ]
Pflug, Simon [1 ]
Schroer, Kirsten [1 ]
Stein, Nadine [1 ]
Wiendahl, Christiane [1 ]
机构
[1] Forschungszentrum Julich, Inst Biotechnol 2, D-52425 Julich, Germany
关键词
metabolomics; metabolome; microbial; LC-MS; GC-MS; mass spectrometry;
D O I
10.1007/s00253-007-1029-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, metabolomics developed to an accepted and valuable tool in life sciences. Substantial improvements of analytical hardware allow metabolomics to run routinely now. Data are successfully used to investigate genotype-phenotype relations of strains and mutants. Metabolomics facilitates metabolic engineering to optimise mircoorganisms for white biotechnology and spreads to the investigation of biotransformations and cell culture. Metabolomics serves not only as a source of qualitative but also quantitative data of intra-cellular metabolites essential for the model-based description of the metabolic network operating under in vivo conditions. To collect reliable metabolome data sets, culture and sampling conditions, as well as the cells' metabolic state, are crucial. Hence, application of biochemical engineering principles and method standardisation efforts become important. Together with the other more established omics technologies, metabolomics will strengthen its claim to contribute to the detailed understanding of the in vivo function of gene products, biochemical and regulatory networks and, even more ambitious, the mathematical description and simulation of the whole cell in the systems biology approach. This knowledge will allow the construction of designer organisms for process application using biotransformation and fermentative approaches making effective use of single enzymes, whole microbial and even higher cells.
引用
收藏
页码:495 / 511
页数:17
相关论文
共 222 条
[31]   An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry [J].
Castrillo, JI ;
Hayes, A ;
Mohammed, S ;
Gaskell, SJ ;
Oliver, SG .
PHYTOCHEMISTRY, 2003, 62 (06) :929-937
[32]   Dynamic modeling of the central carbon metabolism of Escherichia coli [J].
Chassagnole, C ;
Noisommit-Rizzi, N ;
Schmid, JW ;
Mauch, K ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) :53-73
[33]   Control of the threonine-synthesis pathway in Escherichia coli:: a theoretical and experimental approach [J].
Chassagnole, C ;
Fell, DA ;
Raïs, B ;
Kudla, B ;
Mazat, JP .
BIOCHEMICAL JOURNAL, 2001, 356 :433-444
[34]   Isotopomer Analysis Using GC-MS [J].
Christensen, Bjarke ;
Nielsen, Jens .
METABOLIC ENGINEERING, 1999, 1 (04) :282-290
[35]   Improving LC-MS sensitivity through increases in chromatographic performance: Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS [J].
Churchwell, MI ;
Twaddle, NC ;
Meeker, LR ;
Doerge, DR .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2005, 825 (02) :134-143
[36]   Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography - Electrospray ionization mass spectrometry [J].
Coulier, Leon ;
Bas, Richard ;
Jespersen, Sonja ;
Verheij, Elwin ;
van der Werf, Mariet J. ;
Hankemeier, Thomas .
ANALYTICAL CHEMISTRY, 2006, 78 (18) :6573-6582
[37]  
Cruz HJ, 1999, BIOTECHNOL BIOENG, V66, P104, DOI 10.1002/(SICI)1097-0290(1999)66:2<104::AID-BIT3>3.0.CO
[38]  
2-#
[39]   Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry [J].
Dalluge, JJ ;
Smith, S ;
Sanchez-Riera, F ;
McGuire, C ;
Hobson, R .
JOURNAL OF CHROMATOGRAPHY A, 2004, 1043 (01) :3-7
[40]   GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing [J].
Dauner, M ;
Sauer, U .
BIOTECHNOLOGY PROGRESS, 2000, 16 (04) :642-649