The quartic oscillator: a non-perturbative study by continuous unitary transformations

被引:27
作者
Dusuel, S
Uhrig, GS
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Ecole Normale Super Lyon, CNRS, UMR 5672, Phys Lab, F-69364 Lyon, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 39期
关键词
D O I
10.1088/0305-4470/37/39/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum quartic oscillator is investigated in order to test the many-body technique of the continuous unitary transformations. The quartic oscillator is sufficiently simple to allow a detailed study and comparison of various approximation schemes. Due to its simplicity, it can be used as a pedagogical introduction to the unitary transformations. Both the spectrum and the spectral weights are discussed.
引用
收藏
页码:9275 / 9294
页数:20
相关论文
共 19 条
[1]   Non-perturbative renormalization group analysis in quantum mechanics [J].
Aoki, KI ;
Horikoshi, A ;
Taniguchi, M ;
Terao, H .
PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (03) :571-590
[2]   Renormalization group for two-dimensional fermions with a flat Fermi surface -: art. no. 094505 [J].
Dusuel, S ;
de Abreu, FV ;
Douçot, B .
PHYSICAL REVIEW B, 2002, 65 (09) :1-31
[3]   PERTURBATIVE RENORMALIZATION-GROUP FOR HAMILTONIANS [J].
GLAZEK, SD ;
WILSON, KG .
PHYSICAL REVIEW D, 1994, 49 (08) :4214-4218
[4]   RENORMALIZATION OF HAMILTONIANS [J].
GLAZEK, SD ;
WILSON, KG .
PHYSICAL REVIEW D, 1993, 48 (12) :5863-5872
[5]  
HEDDEN R, 2004, CONDMAT0404711
[6]   QUANTUM-THEORY OF ANHARMONIC OSCILLATORS - ENERGY-LEVELS OF A SINGLE AND A PAIR OF COUPLED OSCILLATORS WITH QUARTIC COUPLING [J].
HIOE, FT ;
MACMILLEN, D ;
MONTROLL, EW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 43 (07) :305-335
[7]   Theory of the Anderson impurity model: The Schrieffer-Wolff transformation reexamined [J].
Kehrein, SK ;
Mielke, A .
ANNALS OF PHYSICS, 1996, 252 (01) :1-32
[8]   Flow equations for the spin-boson problem [J].
Kehrein, SK ;
Mielke, A ;
Neu, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 99 (02) :269-280
[9]   Perturbation theory by flow equations: dimerized and frustrated S=1/2 chain [J].
Knetter, C ;
Uhrig, GS .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (02) :209-225
[10]   Flow equations for band-matrices [J].
Mielke, A .
EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03) :605-611