Continuous-flow electroreduction of carbon dioxide

被引:300
作者
Endrodi, B. [1 ,2 ]
Bencsik, G. [1 ,2 ]
Darvas, F. [3 ]
Jones, R. [3 ]
Rajeshwar, K. [4 ]
Janaky, C. [1 ,2 ]
机构
[1] MTA SZTE Lendulet Photoelectrochem Res Grp, Rerrich Sq 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Dept Phys Chem & Mat Sci, Rerrich Sq 1, H-6720 Szeged, Hungary
[3] ThalesNano Inc, Zahony U 7, H-1031 Budapest, Hungary
[4] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA
基金
欧洲研究理事会;
关键词
Electrolysis; CO2; conversion; Renewable energy; Syngas; Solar fuels; SOLID POLYMER ELECTROLYTE; GAS-DIFFUSION ELECTRODES; CONTINUOUS ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; ELECTROCATALYTIC CONVERSION; MICROFLUIDIC REACTOR; OPERATING-CONDITIONS; CATALYST LAYERS; CURRENT-DENSITY; WASTE-WATER;
D O I
10.1016/j.pecs.2017.05.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While impressive progress has been achieved in developing novel nanostructured catalysts and understanding the mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemical reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way to scale-up this fledgling technology for future industrial application. In this review article, we discuss the parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support, etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues offering particularly promising development opportunities together with the intrinsic limitations of the different approaches. By collecting the most relevant characterization methods (together with the relevant descriptive parameters), we also present an assessment framework for benchmarking CO2 electrolyzers. Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:133 / 154
页数:22
相关论文
共 141 条
[101]   Electrochemical Conversion of Carbon Dioxide to Formate in Alkaline Polymer Electrolyte Membrane Cells [J].
Narayanan, S. R. ;
Haines, B. ;
Soler, J. ;
Valdez, T. I. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) :A167-A173
[102]   The Artificial Leaf [J].
Nocera, Daniel G. .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (05) :767-776
[103]   Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction [J].
Oh, Yeonji ;
Hu, Xile .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2253-2261
[104]   Electrochemical processing of carbon dioxide [J].
Oloman, Colin ;
Li, Hui .
CHEMSUSCHEM, 2008, 1 (05) :385-391
[105]   Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations [J].
Osterloh, Frank E. .
ACS ENERGY LETTERS, 2017, 2 (02) :445-453
[106]  
PARKINSON B, 1984, ACCOUNTS CHEM RES, V17, P431, DOI 10.1021/ar00108a004
[107]   Electrochemical reactors for CO2 reduction: From acid media to gas phase [J].
Perez-Rodriguez, S. ;
Barreras, F. ;
Pastor, E. ;
Lazaro, M. J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (43) :19756-19765
[108]   A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels [J].
Qiao, Jinli ;
Liu, Yuyu ;
Hong, Feng ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (02) :631-675
[109]  
Rodríguez JMD, 2000, J CHEM EDUC, V77, P1195
[110]   Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials [J].
Rosen, Brian A. ;
Salehi-Khojin, Amin ;
Thorson, Michael R. ;
Zhu, Wei ;
Whipple, Devin T. ;
Kenis, Paul J. A. ;
Masel, Richard I. .
SCIENCE, 2011, 334 (6056) :643-644