Continuous-flow electroreduction of carbon dioxide

被引:300
作者
Endrodi, B. [1 ,2 ]
Bencsik, G. [1 ,2 ]
Darvas, F. [3 ]
Jones, R. [3 ]
Rajeshwar, K. [4 ]
Janaky, C. [1 ,2 ]
机构
[1] MTA SZTE Lendulet Photoelectrochem Res Grp, Rerrich Sq 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Dept Phys Chem & Mat Sci, Rerrich Sq 1, H-6720 Szeged, Hungary
[3] ThalesNano Inc, Zahony U 7, H-1031 Budapest, Hungary
[4] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA
基金
欧洲研究理事会;
关键词
Electrolysis; CO2; conversion; Renewable energy; Syngas; Solar fuels; SOLID POLYMER ELECTROLYTE; GAS-DIFFUSION ELECTRODES; CONTINUOUS ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; ELECTROCATALYTIC CONVERSION; MICROFLUIDIC REACTOR; OPERATING-CONDITIONS; CATALYST LAYERS; CURRENT-DENSITY; WASTE-WATER;
D O I
10.1016/j.pecs.2017.05.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While impressive progress has been achieved in developing novel nanostructured catalysts and understanding the mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemical reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way to scale-up this fledgling technology for future industrial application. In this review article, we discuss the parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support, etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues offering particularly promising development opportunities together with the intrinsic limitations of the different approaches. By collecting the most relevant characterization methods (together with the relevant descriptive parameters), we also present an assessment framework for benchmarking CO2 electrolyzers. Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:133 / 154
页数:22
相关论文
共 141 条
[61]   Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction [J].
Kas, Recep ;
Hummadi, Khalid Khazzal ;
Kortlever, Ruud ;
de Wit, Patrick ;
Milbrat, Alexander ;
Luiten-Olieman, Mieke W. J. ;
Benes, Nieck E. ;
Koper, Marc T. M. ;
Mul, Guido .
NATURE COMMUNICATIONS, 2016, 7
[62]   Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO [J].
Kim, Byoungsu ;
Hillman, Febrian ;
Ariyoshi, Miho ;
Fujikawa, Shigenori ;
Kenis, Paul J. A. .
JOURNAL OF POWER SOURCES, 2016, 312 :192-198
[63]   Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid [J].
Kim, Hak-Yoon ;
Choi, Insoo ;
Ahn, Sang Hyun ;
Hwang, Seung Jun ;
Yoo, Sung Jong ;
Han, Jonghee ;
Kim, Jihyun ;
Park, Hansoo ;
Jang, Jong Hyun ;
Kim, Soo-Kil .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (29) :16506-16512
[64]   PREPARATION OF CU-SOLID POLYMER ELECTROLYTE COMPOSITE ELECTRODES AND APPLICATION TO GAS-PHASE ELECTROCHEMICAL REDUCTION OF CO2 [J].
KOMATSU, S ;
TANAKA, M ;
OKUMURA, A ;
KUNGI, A .
ELECTROCHIMICA ACTA, 1995, 40 (06) :745-753
[65]   Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes [J].
Kondratenko, Evgenii V. ;
Mul, Guido ;
Baltrusaitis, Jonas ;
Larrazabal, Gaston O. ;
Perez-Ramirez, Javier .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3112-3135
[66]   Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes [J].
Kopljar, D. ;
Inan, A. ;
Vindayer, P. ;
Wagner, N. ;
Klemm, E. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (10) :1107-1116
[67]   Transferring Electrochemical CO2 Reduction from Semi-Batch into Continuous Operation Mode Using Gas Diffusion Electrodes [J].
Kopljar, Dennis ;
Wagner, Norbert ;
Klemm, Elias .
CHEMICAL ENGINEERING & TECHNOLOGY, 2016, 39 (11) :2042-2050
[68]   Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide [J].
Kortlever, Ruud ;
Shen, Jing ;
Schouten, Klaas Jan P. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (20) :4073-4082
[69]   A membrane electrode assembly for the electrochemical synthesis of hydrocarbons from CO2(g) and H2O(g) [J].
Kriescher, Stefanie M. A. ;
Kugler, Kurt ;
Hosseiny, Seyed S. ;
Gendel, Youri ;
Wessling, Matthias .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 50 :64-68
[70]   New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces [J].
Kuhl, Kendra P. ;
Cave, Etosha R. ;
Abram, David N. ;
Jaramillo, Thomas F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7050-7059