Sorting of plant vacuolar proteins is initiated in the ER

被引:67
作者
Niemes, Silke [1 ]
Labs, Mathias [1 ]
Scheuring, David [1 ]
Krueger, Falco [1 ]
Langhans, Markus [1 ]
Jesenofsky, Barbara [1 ]
Robinson, David G. [1 ]
Pimpl, Peter [1 ,2 ]
机构
[1] Heidelberg Univ, Heidelberg Inst Plant Sci, Dept Cell Biol, D-6900 Heidelberg, Germany
[2] Univ Tubingen, Ctr Plant Mol Biol ZMBP, D-72076 Tubingen, Germany
关键词
vacuolar sorting receptor; BP80; vacuolar cargo; endoplasmic reticulum; sorting nexins; retromer; TRANS-GOLGI NETWORK; ENDOPLASMIC-RETICULUM; PREVACUOLAR COMPARTMENT; MEMBRANE-PROTEIN; STORAGE PROTEINS; RECEPTOR PV72; ARABIDOPSIS; YEAST; RETROMER; BINDING;
D O I
10.1111/j.1365-313X.2010.04171.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co-expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII-mediated transport route. Retention of soluble cargo despite ongoing COPII-mediated bulk flow can only be explained by an interaction with membrane-bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER-anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR-ligand interaction. It also implies that the retromer-mediated recycling route for the VSRs leads from the TGN back to the ER.
引用
收藏
页码:601 / 614
页数:14
相关论文
共 58 条
[1]   Yeast Golgi-localized, γ-Ear-containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment [J].
Abazeed, Mohamed E. ;
Fuller, Robert S. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (11) :4826-4836
[2]   Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor [J].
Arighi, CN ;
Hartnell, LM ;
Aguilar, RC ;
Haft, CR ;
Bonifacino, JS .
JOURNAL OF CELL BIOLOGY, 2004, 165 (01) :123-133
[3]   SNAREs: Cogs and coordinators in signaling and development [J].
Bassham, Diane C. ;
Blatt, Michael R. .
PLANT PHYSIOLOGY, 2008, 147 (04) :1504-1515
[4]   A CARBOXYL-TERMINAL PROPEPTIDE IS NECESSARY FOR PROPER SORTING OF BARLEY LECTIN TO VACUOLES OF TOBACCO [J].
BEDNAREK, SY ;
WILKINS, TA ;
DOMBROWSKI, JE ;
RAIKHEL, NV .
PLANT CELL, 1990, 2 (12) :1145-1155
[5]   Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network [J].
Boevink, P ;
Oparka, K ;
Cruz, SS ;
Martin, B ;
Betteridge, A ;
Hawes, C .
PLANT JOURNAL, 1998, 15 (03) :441-447
[6]   Retromer [J].
Bonifacino, Juan S. ;
Hurley, James H. .
CURRENT OPINION IN CELL BIOLOGY, 2008, 20 (04) :427-436
[7]   Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Stevens, TH .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2005, 1744 (03) :438-454
[8]   Membrane protein transport between the endoplasmic reticulum and the golgi in tobacco leaves is energy dependent but cytoskeleton independent: Evidence from selective photobleaching [J].
Brandizzi, F ;
Snapp, EL ;
Roberts, AG ;
Lippincott-Schwartz, J ;
Hawes, C .
PLANT CELL, 2002, 14 (06) :1293-1309
[9]   Sorting of lysosomal proteins [J].
Braulke, Thomas ;
Bonifacino, Juan S. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (04) :605-614
[10]   Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells [J].
Bright, NA ;
Gratian, MJ ;
Luzio, JP .
CURRENT BIOLOGY, 2005, 15 (04) :360-365