The pitfalls of platform comparison: DNA copy number array technologies assessed

被引:67
作者
Curtis, Christina [1 ,2 ]
Lynch, Andy G. [1 ,2 ]
Dunning, Mark J. [2 ]
Spiteri, Inmaculada [2 ]
Marioni, John C. [3 ]
Hadfield, James [2 ]
Chin, Suet-Feung [1 ,2 ]
Brenton, James D. [1 ,2 ]
Tavare, Simon [1 ,2 ]
Caldas, Carlos [1 ,2 ]
机构
[1] Univ Cambridge, Addenbrookes Hopsital, Dept Oncol, Cambridge CB2 0XZ, England
[2] Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Cambridge CB2 0RE, England
[3] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
来源
BMC GENOMICS | 2009年 / 10卷
基金
英国医学研究理事会;
关键词
COMPARATIVE GENOMIC HYBRIDIZATION; NUCLEOTIDE POLYMORPHISM-LOSS; CELL-LINES; RESOLUTION; HETEROZYGOSITY; NORMALIZATION; BEADARRAY; CGH;
D O I
10.1186/1471-2164-10-588
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. Results: By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. Conclusion: Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons.
引用
收藏
页数:23
相关论文
共 43 条
[1]   Comparison of the Agilent, ROMA/NimbleGen and Illumina platforms for classification of copy number alterations in human breast tumors [J].
Baumbusch, L. O. ;
Aaroe, J. ;
Johansen, F. E. ;
Hicks, J. ;
Sun, H. ;
Bruhn, L. ;
Gunderson, K. ;
Naume, B. ;
Kristensen, V. N. ;
Liestol, K. ;
Borresen-Dale, A-L ;
Lingjaerde, O. C. .
BMC GENOMICS, 2008, 9 (1)
[2]   Estimation and assessment of raw copy numbers at the single locus level [J].
Bengtsson, H. ;
Irizarry, R. ;
Carvalho, B. ;
Speed, T. P. .
BIOINFORMATICS, 2008, 24 (06) :759-767
[3]   A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods [J].
Bengtsson, Henrik ;
Ray, Amrita ;
Spellman, Paul ;
Speed, Terence P. .
BIOINFORMATICS, 2009, 25 (07) :861-867
[4]  
Beroukhim R, 2006, PLOS COMPUT BIOL, V2, P323, DOI 10.1371/journal.pcbi.0020041
[5]   Large-scale identification of single-feature polymorphisms in complex genomes [J].
Borevitz, JO ;
Liang, D ;
Plouffe, D ;
Chang, HS ;
Zhu, T ;
Weigel, D ;
Berry, CC ;
Winzeler, E ;
Chory, J .
GENOME RESEARCH, 2003, 13 (03) :513-523
[6]   BASH: a tool for managing BeadArray spatial artefacts [J].
Cairns, J. M. ;
Dunning, M. J. ;
Ritchie, M. E. ;
Russell, R. ;
Lynch, A. G. .
BIOINFORMATICS, 2008, 24 (24) :2921-2922
[7]   Methods and strategies for analyzing copy number variation using DNA microarrays [J].
Carter, Nigel P. .
NATURE GENETICS, 2007, 39 (Suppl 7) :S16-S21
[8]   Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data [J].
Carvalho, Benilton ;
Bengtsson, Henrik ;
Speed, Terence P. ;
Irizarry, Rafael A. .
BIOSTATISTICS, 2007, 8 (02) :485-499
[9]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[10]   Resolving the resolution of array CGH [J].
Coe, Bradley P. ;
Ylstra, Bauke ;
Carvalho, Beatriz ;
Meijer, Gerrit A. ;
MacAulay, Calum ;
Lam, Wan L. .
GENOMICS, 2007, 89 (05) :647-653