Can molecular dynamics simulations provide high-resolution refinement of protein structure?

被引:103
作者
Chen, Jianhan [1 ]
Brooks, Charles L., III [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
continuum electrostatics; generalized Born; replica exchange; structure prediction;
D O I
10.1002/prot.21345
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in efficient and accurate treatment of solvent with the generalized Born approximation (GB) have made it possible to substantially refine the protein structures generated by various prediction tools through detailed molecular dynamics simulations. As demonstrated in a recent CASPR experiment, improvement can be quite reliably achieved when the initial models are sufficiently close to the native basin (e.g., 3-4 angstrom C-alpha RMSD). A key element to effective refinement is to incorporate reliable structural information into the simulation protocol. Without intimate knowledge of the target and prediction protocol used to generate the initial structural models, it can be assumed that the regular secondary structure elements (helices and strands) and overall fold topology are largely correct to start with, such that the protocol limits itself to the scope of refinement and focuses the sampling in vicinity of the initial structure. The secondary structures can be enforced by dihedral restraints and the topology through structural contacts, implemented as either multiple pair-wise C-alpha distance restraints or a single sidechain distance matrix restraint. The restraints are weakly imposed with flat-bottom potentials to allow sufficient flexibility for structural rearrangement. Refinement is further facilitated by enhanced sampling of advanced techniques such as the replica exchange method (REX). In general, for single domain proteins of small to medium sizes, 3-5 nanoseconds of REX/GB refinement simulations appear to be sufficient for reasonable convergence. Clustering of the resulting structural ensembles can yield refined models over 1.0 angstrom closer to the native structure in C-alpha RMSD. Substantial improvement of sidechain contacts and rotamer states can also be achieved in most cases. Additional improvement is possible with longer sampling and knowledge of the robust structural features in the initial models for a given prediction protocol. Nevertheless, limitations still exist in sampling as well as force field accuracy, manifested as difficulty in refinement of long and flexible loops. Proteins 2007;67:922-930. (C) 2007 Wiley-Liss, Inc.
引用
收藏
页码:922 / 930
页数:9
相关论文
共 38 条
[1]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[2]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[3]   Toward high-resolution de novo structure prediction for small proteins [J].
Bradley, P ;
Misura, KMS ;
Baker, D .
SCIENCE, 2005, 309 (5742) :1868-1871
[4]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[5]   Refinement of NMR structures using implicit solvent and advanced sampling techniques [J].
Chen, JH ;
Im, W ;
Brooks, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (49) :16038-16047
[6]   Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling [J].
Chen, JH ;
Won, HS ;
Im, WP ;
Dyson, HJ ;
Brooks, CL .
JOURNAL OF BIOMOLECULAR NMR, 2005, 31 (01) :59-64
[7]   Balancing solvation and intramolecular interactions: Toward a consistent generalized born force field [J].
Chen, JH ;
Im, WP ;
Brooks, CL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (11) :3728-3736
[8]   Refinement of homology-based protein structures by molecular dynamics simulation techniques [J].
Fan, H ;
Mark, AE .
PROTEIN SCIENCE, 2004, 13 (01) :211-220
[9]   MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology [J].
Feig, M ;
Karanicolas, J ;
Brooks, CL .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (05) :377-395
[10]  
Feig M, 2003, J PHYS CHEM B, V107, P2831, DOI 10.1021/jp027293y