Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling

被引:9
作者
Bischofberger, Mirko [1 ,2 ]
Iacovache, Ioan [1 ]
Boss, Daniel [3 ]
Naef, Felix [2 ]
van der Goot, F. Gisou [1 ]
Molina, Nacho [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Fac Life Sci, Global Hlth Inst, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Fac Life Sci, Inst Bioengn, Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Fac Life Sci, Brain Mind Inst, Lausanne, Switzerland
[4] Univ Edinburgh, Ctr Synthet & Syst Biol, Edinburgh, Midlothian, Scotland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
TOXIN AEROLYSIN; ERYTHROCYTE-MEMBRANES; BETA-BARREL; PROTEIN; ACTIVATION; MECHANISM; INSERTION; SURFACE;
D O I
10.1016/j.bpj.2016.02.035
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.
引用
收藏
页码:1574 / 1581
页数:8
相关论文
共 27 条
[1]   Adventures of a pore-forming toxin at the target cell surface [J].
Abrami, L ;
Fivaz, M ;
van der Goot, FG .
TRENDS IN MICROBIOLOGY, 2000, 8 (04) :168-172
[2]   Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin [J].
Abrami, L ;
van der Goot, FG .
JOURNAL OF CELL BIOLOGY, 1999, 147 (01) :175-184
[3]   The assembly dynamics of the cytolytic pore toxin ClyA [J].
Benke, Stephan ;
Roderer, Daniel ;
Wunderlich, Bengt ;
Nettels, Daniel ;
Glockshuber, Rudi ;
Schuler, Benjamin .
NATURE COMMUNICATIONS, 2015, 6
[4]   Membrane injury by pore-forming proteins [J].
Bischofberger, Mirko ;
Gonzalez, Manuel R. ;
van der Goot, F. Gisou .
CURRENT OPINION IN CELL BIOLOGY, 2009, 21 (04) :589-595
[5]   Protonation of histidine-132 promotes oligomerization of the channel-forming toxin aerolysin [J].
Buckley, JT ;
Wilmsen, HU ;
Lesieur, C ;
Schulze, A ;
Pattus, F ;
Parker, MW ;
vanderGoot, FG .
BIOCHEMISTRY, 1995, 34 (50) :16450-16455
[7]  
Degiacomi MT, 2013, NAT CHEM BIOL, V9, P623, DOI [10.1038/NCHEMBIO.1312, 10.1038/nchembio.1312]
[8]   Single-particle kinetics of influenza virus membrane fusion [J].
Floyd, Daniel L. ;
Ragains, Justin R. ;
Skehel, John J. ;
Harrison, Stephen C. ;
van Oijen, Antoine M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (40) :15382-15387
[9]   Mechanism of membrane insertion of a multimeric β-barrel protein:: Perfringolysin O creates a pore using ordered and coupled conformational changes [J].
Heuck, AP ;
Hotze, EM ;
Tweten, RK ;
Johnson, AE .
MOLECULAR CELL, 2000, 6 (05) :1233-1242
[10]   Pore formation: An ancient yet complex form of attack [J].
Iacovache, Ioan ;
van der Goot, F. Gisou ;
Pernot, Lucile .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2008, 1778 (7-8) :1611-1623