Differential and numerically invariant signature curves applied to object recognition

被引:165
作者
Calabi, E [1 ]
Olver, PJ
Shakiban, C
Tannenbaum, A
Haker, S
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19066 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] St Thomas Univ, Dept Math, St Paul, MN 55105 USA
[4] Univ Minnesota, Dept Elect Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
object recognition; symmetry group; differential invariant; joint invariant; signature curve; Euclidean group; equi-affine group; numerical approximation; curve shortening flow; snake;
D O I
10.1023/A:1007992709392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new paradigm, the differential invariant signature curve or manifold, for the invariant recognition of visual objects. A general theorem of E. Cartan implies that two curves are related by a group transformation if and only if their signature curves are identical. The important examples of the Euclidean and equi-affine groups are discussed in detail. Secondly, we show how a new approach to the numerical approximation of differential invariants, based on suitable combination of joint invariants of the underlying group action, allows one to numerically compute differential invariant signatures in a fully group-invariant manner. Applications to a variety of fundamental issues in vision, including detection of symmetries, visual tracking, and reconstruction of occlusions, are discussed.
引用
收藏
页码:107 / 135
页数:29
相关论文
共 60 条
  • [31] LEI Z, 1995, RECOGNITION COMPLEX
  • [32] Lie S., 1884, Math. Ann., V24, P537
  • [33] Lie S., 1880, MATH ANN, V16, P441, DOI DOI 10.1007/BF01446218
  • [34] FOUNDATIONS OF SEMI-DIFFERENTIAL INVARIANTS
    MOONS, T
    PAUWELS, EJ
    VANGOOL, LJ
    OOSTERLINCK, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1995, 14 (01) : 25 - 47
  • [35] MUMFORD D, 1991, P SOC PHOTO-OPT INS, V1570, P2, DOI 10.1117/12.49981
  • [36] MUNDY JL, 1994, APPL INVARIANCE COMP
  • [37] MUNDY JL, 1992, GEOMETRIC INVARIANCE
  • [38] Olver P.J., 1994, Comput. Imaging Vis., V1, P255
  • [39] Olver P. J., 1995, Equivalence, Invariants and Symmetry, DOI DOI 10.1017/CBO9780511609565
  • [40] Invariant geometric evolutions of surfaces and volumetric smoothing
    Olver, PJ
    Sapiro, G
    Tannenbaum, A
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (01) : 176 - 194