Origin of the large band-gap bowing in highly mismatched semiconductor alloys

被引:61
作者
Wu, J [1 ]
Walukiewicz, W
Yu, KM
Ager, JW
Haller, EE
Miotkowski, I
Ramdas, AK
Su, CH
Sou, IK
Perera, RCC
Denlinger, JD
机构
[1] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[5] NASA, George C Marshall Space Flight Ctr, Sci Directorate SD46, Huntsville, AL 35812 USA
[6] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[7] Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA
[8] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevB.67.035207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photomodulated reflection, optical absorption, and photoluminescence spectroscopies have been used to measure the composition dependence of interband optical transitions in ZnSe1-xTex and ZnS1-xTex alloys. The results reveal entirely different origins of the large band-gap bowing for small and large Te content. On the Te-rich side, the reduction of the band gap is well explained by the band anticrossing interaction between the Se or S localized states and the ZnTe conduction-band states. On the Se- or S-rich side, an interaction between the localized Te states and the degenerate Gamma valence bands of ZnSe or ZnS is responsible for the band-gap reduction and the rapid increase of the spin-orbit splitting with increasing Te concentration. Results of the soft-x-ray emission experiment provide direct proof of the valence-band anticrossing interaction. The band-gap bowing in the entire composition range is accounted for by a linear interpolation between the conduction-band anticrossing and valence-band anticrossing models.
引用
收藏
页数:5
相关论文
共 21 条
[1]   THIRD-DERIVATIVE MODULATION SPECTROSCOPY WITH LOW-FIELD ELECTROREFLECTANCE [J].
ASPNES, DE .
SURFACE SCIENCE, 1973, 37 (01) :418-442
[2]   ELECTRONIC-STRUCTURE OF ZNS, ZNSE, ZNTE, AND THEIR PSEUDOBINARY ALLOYS [J].
BERNARD, JE ;
ZUNGER, A .
PHYSICAL REVIEW B, 1987, 36 (06) :3199-3228
[3]   EVOLUTION OF THE BAND-GAP AND THE DOMINANT RADIATIVE RECOMBINATION CENTER VERSUS THE COMPOSITION FOR ZNSE1-XTEX ALLOYS GROWN BY MOLECULAR-BEAM EPITAXY [J].
BRASIL, MJSP ;
NAHORY, RE ;
TURCOSANDROFF, FS ;
GILCHRIST, HL ;
MARTIN, RJ .
APPLIED PHYSICS LETTERS, 1991, 58 (22) :2509-2511
[4]   Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F .
PHYSICAL REVIEW B, 2001, 63 (19)
[5]   SPIN-ORBIT-SPLITTING AT GAMMA POINT IN ZNSEXTE1-X ALLOYS [J].
EBINA, A ;
SATO, Y ;
TAKAHASHI, T .
PHYSICAL REVIEW LETTERS, 1974, 32 (24) :1366-1370
[6]   Observation of intermixing at the buried CdS/Cu(In,Ga)Se2 thin film solar cell heterojunction [J].
Heske, C ;
Eich, D ;
Fink, R ;
Umbach, E ;
van Buuren, T ;
Bostedt, C ;
Terminello, LJ ;
Kakar, S ;
Grush, MM ;
Callcott, TA ;
Himpsel, FJ ;
Ederer, DL ;
Perera, RCC ;
Riedl, W ;
Karg, F .
APPLIED PHYSICS LETTERS, 1999, 74 (10) :1451-1453
[7]  
HILL R, 1971, J PHYS C SOLID STATE, V4, pL289
[8]   Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a delta-doping technique [J].
Jung, HD ;
Song, CD ;
Wang, SQ ;
Arai, K ;
Wu, YH ;
Zhu, Z ;
Yao, T ;
KatayamaYoshida, H .
APPLIED PHYSICS LETTERS, 1997, 70 (09) :1143-1145
[9]   EXCITON SELF-TRAPPING IN ZNSE-ZNTE ALLOYS [J].
LEE, D ;
MYSYROWICZ, A ;
NURMIKKO, AV ;
FITZPATRICK, BJ .
PHYSICAL REVIEW LETTERS, 1987, 58 (14) :1475-1478
[10]   BAND NONPARABOLICITIES IN LATTICE-MISMATCH-STRAINED BULK SEMICONDUCTOR LAYERS [J].
PEOPLE, R ;
SPUTZ, SK .
PHYSICAL REVIEW B, 1990, 41 (12) :8431-8439