Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrodinger equation

被引:55
作者
Barashenkov, IV [1 ]
Smirnov, YS [1 ]
Alexeeva, NV [1 ]
机构
[1] Univ Cape Town, Dept Appl Math, ZA-7700 Rondebosch, South Africa
关键词
D O I
10.1103/PhysRevE.57.2350
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study bifurcations of localized stationary solutions of the externally driven, damped nonlinear Schrodinger equation i Psi(t) + Psi(xx) +2\Psi\(2) Psi = -i gamma Psi - he(i Omega t) in the region of large gamma (gamma>1/2). For each pair of h and gamma, there are two coexisting solitons Psi(+) and Psi(-). As the driver's strength h increases for the fixed gamma, the Psi(+) soliton merges with the flat background while the Psi(-) forms a stationary collective state with two "Psi pluses": Psi(-) --> Psi((+-+)). We obtain other stationary solutions and identify them as multisoliton complexes Psi((++)), Psi((--)), Psi((-+)), Psi((---)), Psi((-+-)), etc.
引用
收藏
页码:2350 / 2364
页数:15
相关论文
共 26 条
[1]   Stability of bound states of pulses in the Ginzburg-Landau equations [J].
Afanasjev, VV ;
Malomed, BA ;
Chu, PL .
PHYSICAL REVIEW E, 1997, 56 (05) :6020-6025
[2]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[3]  
BARASHENKOV LV, 1997, 397 RR U CAP TOWN
[4]   A QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE [J].
BISHOP, AR ;
FOREST, MG ;
MCLAUGHLIN, DW ;
OVERMAN, EA .
PHYSICA D, 1986, 23 (1-3) :293-328
[5]  
BOGDAN MM, 1980, THESIS I LOW TEMPERA
[6]   TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION [J].
BONDILA, M ;
BARASHENKOV, IV ;
BOGDAN, MM .
PHYSICA D, 1995, 87 (1-4) :314-320
[7]   BOUND SOLITONS IN THE AC-DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N ;
MALOMED, BA .
PHYSICAL REVIEW E, 1994, 49 (02) :1677-1684
[8]   CHAOS IN THE INHOMOGENEOUSLY DRIVEN SINE-GORDON EQUATION [J].
EILBECK, JC ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICS LETTERS A, 1981, 87 (1-2) :1-4
[9]   DISSIPATIVE MODULATION INSTABILITY IN A NONLINEAR DISPERSIVE RING CAVITY [J].
HAELTERMAN, M ;
TRILLO, S ;
WABNITZ, S .
OPTICS COMMUNICATIONS, 1992, 91 (5-6) :401-407
[10]   ADDITIVE-MODULATION-INSTABILITY RING LASER IN THE NORMAL DISPERSION REGIME OF A FIBER [J].
HAELTERMAN, M ;
TRILLO, S ;
WABNITZ, S .
OPTICS LETTERS, 1992, 17 (10) :745-747